Potres

(Preusmjereno sa stranice Zemljotres)

Potres ili zemljotres (trus) nastaje usled pomeranja tektonskih ploča, kretanja Zemljine kore ili pojave udara, a posledica je podrhtavanje Zemljine kore zbog oslobađanja velike energije.[1] Nasuprot rasprostranjenom uverenju da su to retke pojave, oni se dešavaju vrlo često, ali njihov najveći broj je slabog intenziteta i javlja se na relativno malim poršinama kopnenih prostora ili okeanskog dna.

Karta sa svim epicentrima potresa od 1963-1998. godine
Prikaz pokreta tektonskih ploča prema GPS merenjima

Na zemljinoj površini, zemljotresi se mogu manifestovati kao drmanje ili dislociranje tla. Ponekada, mogu izazivati pojavu cunamija, razornog morskog talasa. Do zemljotresa dolazi usled zaglavljivanja tektonskih ploča pri čemu dolazi do naprezanja stenske mase i onog trenutka kada naprezanje postane toliko da ga stene ne mogu izdržati dolazi do lomljenja i klizanja duž raseda.

Zemljotresi mogu nastati prirodno ili kao rezultat ljudske aktivnosti. Manji zemljotresi mogu takođe biti izazvani vulkanskom aktivnošću, klizanjem tla, eksplozijama i nuklearnim testovima. U najširem značenju reč zemljotres se koristi da opiše bilo koji seizmični događaj - bilo da je u pitanju prirodni fenomen ili događaj izazvan od strane ljudi — a koji generiše seizmičke talase.

Zemljotresi ulaze u red najstrašnijih prirodnih katastrofa koje se dešavaju na Zemlji, zbog čega su još od iskona privlačili pažnju ljudskog roda. Zbog toga podatke o zemljotresima nalazimo u zapisima starim više hiljada godina. Ipak, značajnija proučavanja zemljotresa odvijala su se tek od 19. veka.

Definicija zemljotresa

uredi

Zemljotres predstavlja oscilovanje čestica tla izazvano prirodnim ili veštačkim uzrocima. Posledica su oslobođene Zemljine unutrašnje energije. Za skup svih seizmičkih pojava upotrebljava se zajednički naziv seizmizam. Seizmizam ili potresi su iznenadna i kratka podrhtavanja dijelova zemljine kore.

Potres je proces oslobađanja kinetičke energije na nekom nebeskom tijelu. Potres na našoj planeti naziva se zemljotres. Događa se u Zemljinoj litosferi ili neposredno ispod, u sljedećem sloju tzv. astenosferi i plaštu, koji čini većinu Zemljine mase. Dio kinetičke energije koji se rasipa putem litosfere naziva se seizmička energija i mjeri se u seizmološkim opservatorijama (stanicama). Kod većine zemljotresa seizmička energija je proporcionalna ukupnoj kinetičkoj energiji. Zato su za većinu potreba površinske opservatorije dovoljne, a osim površinskih kopnenih postoje još i dubinske kopnene, te podmorske opservatorije. Oslobađanje energije može biti kontinuirano, kada govorimo o sporom zemljotresu i koji može trajati godinama, ili prividno trenutno, kada zemljotres obično traje kraće od jednog minuta. Zemljotresi mogu biti prirodni tj. nastali usljed djelovanja sila prirode, ili vještački izazvani aktivnošću čovjeka, npr. detonacijom eksplozivnih sredstava.

Uzroci potresa na drugim nebeskim tijelima ne moraju biti istog porijekla kao na Zemlji. Stoga je i sa stanovišta fizike opravdano izraz zemljotres koristiti isključivo za Zemlju, a potres za sva nebeska tijela. Tako se potresi na drugim nebeskim tijelima u naučnoj literaturi nazivaju prema tom tijelu, npr. oni na Mjesecu nazivaju se lunatresi. U engleskom govornom području međutim česta je i upotreba izraza potres (quake) kao skraćenice za zemljotres (earthquake). Nauka koja se bavi izučavanjem zemljotresa i srodnih procesa je seizmologija i zasniva se na direktnim mjerenjima. Nauka koja izučava potrese na drugim nebeskim tijelima je astroseizmologija i uglavnom se zasniva na indirektnim opažanjima. Primjer ovoga je opažanje akustičnih svojstava Sunčevih gasova, pošto su akustični talasi u biti talasi kinetičke energije koji se prostiru kroz gasove, npr. u atmosferi. U Sunčevom sistemu potrese uzrokuju hemijske reakcije kod gasovitih nebeskih tijela, odnosno plimne sile te snažna vulkanska aktivnost kod stjenovitih tijela.

Podela zemljotresa

uredi

Zemljotresi se, prema načinu postanka dele na prirodne i veštačke. Prirodni zemljotresi se, dalje, mogu podeliti na spontane i izazvane. Spontani zemljotresi su oni koji nastaju usled kretanja litosfernih ploča, pa se nazivaju i tektonski zemljotresi. U grupu izazvnih prirodnih zemljotresa spadaju vulkanski i urvinski zemljotresi.

Tektonski zemljotresi nastaju oslobađanjem seizmičke energije u Zemljinoj kori. Nastaju pod dejstvom velikih pritisaka u stenskim masama Zemljine kore, najčešće izazvane pomeranjem većih blokova Zemljine kore. Tako dolazi do iznenadnog loma stenske mase, koji je praćen elastičnim deformacijama okolnih stenskih masa, koje se zatim šire u prostor u obliku seizmičkih talasa. Uzroci pokreta u litosferi su konvekcijska strujanja koja se dešavaju u astenosferi. Tom prilikom se hladnija magma spušta iz gornjih delova, i iz donjih delova prema površini gura topliju magmu (slično procesu ključanja vode), što dovodi do širenja okeanskog dna. Litosfera je razlomljena u više ploča, koje se međusobno mimoilaze, sudaraju i razilaze. Mimoilaženje ploča se razvija blizu zona širenja, mada ne mora uvek biti vezano za njih. U ovim zonama su potresi vrlo česti, jer je astenosfera ohlađena i čvrsta, velike viskoznosti. Razilaženje ploča se odvija najčešće na okeanskom dnu, dok postoje samo dva primera razilaženja na kopnu - Island i istočna Afrika. Duž ovih granica potresi su ređi, jer je astenosfera još uvek žitka i male viskoznosti. Subdukcija ploča se razvija u oblastima sudaranja okeanskih i/ili kontinentalnih ploča. Ploče su ovde već očvrsle i hlađene, pa su i zemljotresi ovde najčešći i najjači.

Vulkanski zemljotresi nastaju kao posledica kretanja magme u oblastima savremenih vulkana. U neposrednoj su vezi sa snažnim vulkanskim erupcijama i eksplozijama vulkanskih gasova i para.

Urvinski zemljotresi nastaju kao posledica obrušavanja svodova i bokova velikih pećina i podzemnih prostorija. Obično se javljaju u terenima izgrađenim od krečnjaka, gipsa i drugih stena podložnih lakom razaranju u kojima nastaju pećine različitih dimenzija.

Veštački zemljotresi nastaju usled delatnosti čoveka, odnosno njegovim dejstvom na prirodnu sredinu. Najčešći primer takvih aktivnosti može se pratiti u oblastima u kojima su formirana velika veštačka akumulaciona jezera, gde se formiraju tzv. indukovani zemljotresi. Grupi veštačkih zemljotresa pripada i seizmička aktivnost stimulisana upumpavanjem vode u duboke bušotine (na primer, za potrebe eksploatacije geotermalne energije iz Zemljine unutrašnjosti).

Prirodni zemljotresi

uredi

Litosfera je neprestano izložena djelovanju različitih unutarnjih i vanjskih sila koje naprežu stijensku masu. Na taj način stijenje nakuplja veliku potencijalnu energiju. Svaki materijal vremenom popušta naprezanju i oslobađa se stresa ispuštanjem kinetičke tj. stvarne energije. Veliku većinu zemljotresa karakterišemo kao slabe pošto ne razaraju vještačke objekte. Većina slabih zemljotresa događa se kad stijenska masa dosegne svoju materijalnu nestabilnost. Manji broj zemljotresa su razorni po vještačke objekte. Većina takvih zemljotresa nastaje usljed tektonske aktivnosti Zemlje tj. međusobnim trenjem kore i plašta u pokretu, najčešće duž postojećih raspuklina u Zemljinoj kori kao što su rasjedi, brazde ili rovovi. Međutim bilježe se razorni zemljotresi i u tektonski neaktivnim područjima, kao i oni koji stvaraju nove raspukline i druge geomorfološke oblike.

 
Prostiranje talasa energije emitirane tokom tipičnog zemljotresa.

Prostiranje energije iz zemljotresa

uredi

Brzina prostiranja talasa zavisi od gustoće i elastičnosti medija u koji talasi prodiru. Brzine se za našu planetu kreću od oko 3–8 km/s u Zemljinoj kori, pa do 13 km/s u najdubljem dijelu plašta. Zemljotresi proizvode razne vrste talasa s različitim brzinama. Pri prolasku preko seizmoloških opservatorija, njihovo različito vrijeme putovanja omogućava naučnicima da lociraju žarište (ili fokus, ili hipocentar) zemljotresa.

U geofizici, talasi isijani tokom zemljotresa koriste se na dva osnovna načina: tomografski gdje se, slično kao u medicini, koriste refrakcija i refleksija talasa za ispitivanje unutrašnjosti, te oscilacijski gdje se identifikacija pojedinih segmenata Zemljine unutrašnjosti vrši odnosno njihova fizikalno-hemijska svojstva ispituju posmatranjem vlastitih slobodnih oscilacija Zemlje karakterističnih za neki njen segment ili proces. Zahvaljujući velikoj globalnoj mreži seizmoloških opservatorija, seizmička tomografija je zastupljeniji način. Nedostatak oba ova načina je to što ih se može koristiti samo kad se desi vrlo jak zemljotres. To je naime jedina pojava na Zemlji, kod koje dolazi do ispuštanja dovoljne količine kinetičke energije da bi se dobila rezolucija (jasnoća) neophodna za dvodimenzionalno ili trodimenzionalno oslikavanje odnosno izučavanje unutrašnjosti planete.

Dva osnovna tipa seizmičkih talasa su tjelesni talasi i površinski talasi. Postoje i drugi načini prostiranja talasa ali oni nisu od velikog značaja u seizmologiji odnosno geofizici.[2]

Tjelesni talasi

uredi

Tjelesni talasi putuju kroz unutrašnjost Zemlje. Oni slijede putanju zrake zakrivljenu promjenljivom gustoćom i Youngovim modulom (krutošću) Zemljine unutrašnjosti. Gustoća i moduli zauzvrat variraju u skladu s promjenama temperature, sastava i faze. Ovaj efekat je sličan refrakciji svjetlosnih talasa.

  • P talasi (primarni) su longitudinalni ili kompresijski talasi. U čvrstim materijalima ovi talasi generalno putuju skoro dvostruko brže od S talasa, a mogu se prostirati kroz sve vrste materijala. U zraku, ti talasi pritiska postaju zvučni ili audio talasi, pa putuju brzinom zvuka. Tipične brzine su 330 m/s kroz zrak, 1450 m/s kroz vodu, te oko 5000 m/s kroz granit.
  • S talasi (sekundarni) su transverzni ili poprečni (eng. shear) talasi, što znači da se pod njihovim djelovanjem tlo pomiče okomito na njihov pravac prostiranja. Kod horizontalno polarizovanih S talasa, tlo se kreće naizmjenično ka jednoj pa drugoj strani. S talasi mogu putovati jedino kroz čvrstu materiju, pošto fluidi (tečnosti i gasovi) nisu u stanju zadržavati poprečne stresove. Brzina ovih talasa je oko 60% brzine P talasa u datom materijalu. S talasi stižu u seizmološku stanicu nakon P talasa, jer imaju relativno manju brzinu prostiranja.

Površinski talasi

uredi

Površinski talasi su analogni vodenim talasima a putuju po Zemljinoj površini, i to sporije nego tjelesni talasi. Usljed njihove niske frekvencije, dugotrajnosti te velike amplitude, oni su većinom najrazornija vrsta seizmičkih talasa. Postoje dva podtipa površinskih talasa: Rayleigh talasi, te Love talasi.

  • Rayleigh talasi, ili "uvijanje tla", su površinski talasi koji putuju u obliku mreškanja (prepletenih nizova manjih talasa), u kretanju sličnom kretanju talasa na površini vode. Međutim za razliku od vodenih talasa, povratna sila kod Rayleigh i dr. seizmičkih talasa nije gravitacijska nego elastična, dok je kretanje čestica na manjim dubinama retrogradno. Postojanje ovih talasa predvidio je 1885. godine nobelovac John Rayleigh. Oni su sporiji od tjelesnih talasa, i imaju brzinu koja je oko 90% brzine S talasa za tipični homogeni elastični medij.
  • Love talasi su površinski talasi koji uzrokuju horizontalno poprečno smicanje tla. Nazvani su po britanskom matematičaru A.E.H. Loveu, koji je 1911. godine izradio matematski model za ove talase. Oni se obično kreću nešto brže od Rayleigh talasa, ili oko 90% brzine S talasa.

Korisnost

uredi

U istraživanju i praksi najkorisniji su P i S talasi, na dva glavna načina: u geofizici kod izučavanja fizikalno-hemijskih svojstava unutrašnjosti Zemlje, te u seizmologiji kod lociranja zemljotresa.

U geofizici

uredi

Talasi isijavani tokom jakih zemljotresa predstavljaju glavni izvor informacija u istraživanju najdubljih regiona naše planete.

Na primjer, kad se zemljotres dogodi, seizmometri u blizini epicentra sve do udaljenosti oko 90 km su u stanju zabilježiti i P i S talase, ali oni udaljeniji više ne prepoznaju visoke frekvencije prvog S talasa. Pošto poprečni talasi ne mogu prolaziti kroz tečnost, ovaj fenomen je poslužio kao prvobitni dokaz danas dobro poznate činjenice da je Zemljina vanjska jezgra tečna. Slično je pretpostavljeno da i Mjesec ima čvrstu jezgru, ali su kasnija istraživanja ukazala da je Mjesečeva jezgra možda istopljena.

U seizmologiji

uredi
 
Primjer određivanja mogućeg položaja hipocentra zemljotresa iz kašnjenja nailaska talasa na dvije udaljene seizmološke stanice (u proizvoljnim jedinicama).

U slučaju lokalnih odnosno bližih zemljotresa, razlika u vremenu nailaska (dolaska prvih) P i S talasa koristi se za određivanje udaljenosti zemljotresa. U slučaju zemljotresa na ogromnim razdaljinama, neophodne su barem četiri geografski raznolike (tj. što ravnomjernije raspoređene oko hipocentra) seizmološke stanice na zajedničkom sistemu praćenja protoka vremena. Na njima se bilježi vrijeme nailaska P talasa, iz čega se onda računa jedinstveno vrijeme i lokacija zemljotresa. Tipično, desetine ili čak stotine nailazaka P talasa koriste se za proračun jednog hipocentra. Uobičajena su neslaganja u proračunu hipocentra do 0,5 sekundi kod udaljenih, a 0,1-0,2 sekundi kod lokalnih zemljotresa. Ovo praktično znači da je većina dojavljenih nailazaka P talasa u saglasnosti s proračunom lokacije hipocentra. Tipičan algoritam za računanje lokacije je iterativan (tj. rješenju se približava u koracima), a započinje s pretpostavkom da se zemljotres desio na dubini od 33 km, da bi potom podešavanjem dubine minimizirao ostatke iz proračuna. Većina zemljotresa dešava se na dubinama do 100 km.

Brz i najmanje pouzdan način određivanja razdaljine između seizmometra i ishodišta seizmičkog talasa do 200 km udaljenosti, je množenjem kašnjenja tj. razlike vremena nadolazaka P talasa i S talasa u sekundama, sa 8 km/s. Savremene mreže seizmoloških opservatorija služe se komplikovanijim i pouzdanijim načinima za lociranje zemljotresa.

Na ogromnim razdaljinama odnosno globalno, prvopridošli P talasi su prethodno putovali duboko u unutrašnjost Zemljinog plašta, i možda se čak i reflektovali od vanjsku jezgru, prije nego što su doputovali nazad do Zemljine površine gdje ih je zabilježila seizmološka opservatorija. Talasi na ovaj način putuju brže nego da su se od zemljotresa do seizmometra kretali pravolinijski. Razlog tome je što se, u skladu s Huygensovim principom, brzina kretanja unutar Zemlje znatno povećava. Po tom Principu gustoća unutar planete raste s dubinom, što bi samo po sebi usporilo talase, ali pošto s dubinom još više raste i modulus stijena, dublje znači brže. Stoga duži put može zahtijevati kraće vrijeme.

Da bi se precizno sračunala lokacija hipocentra, stvarno vrijeme putovanja mora biti poznato s velikom tačnošću. Zato je od velike važnosti da opservatorije budu na istom sistemu praćenja protoka vremena. Danas u tu svrhu najčešće služi sistem globalnog pozicioniranja GPS, koji kao sastavni dio svoje navigacijske radio-poruke sadrži i vrijeme. Budući da u svakoj sekundi vremena P talasi prevale velike razdaljine, čak i greška od 0,5 s u proračunu vremena nailaska može značiti za više stotina kilometara pogrešan proračun udaljenosti pa time i lokacije zemljotresa. U praksi se stoga koriste nailasci P talasa u veliki broj seizmoloških stanica zajedno, kako bi se na taj način greške umanjile ili poništile. Tako sračunata lokacija epicentra danas je uglavnom pouzdana, i kreće se u prosjeku oko 10–50 km globalno. Guste mreže bliskih stanica, kakve postoje npr. u Kaliforniji, omogućuju tačnost od oko 1 km. Daleko veća tačnost je ostvariva kad se vrijeme mjeri direktno pomoću unakrsnog koreliranja talasnih frontova.

Opis zemljotresa sadrži podatke o jačini (tj. magnitudi), lokaciji i vrsti cijepanja Zemljine kore. Opis lokacije zemljotresa zavisi od toga da li nam je važnije promatrati zemljotres po njegovoj stvarnoj jačini i u hipocentru, ili pak u projekciji tog žarišta na površinu epicentru. U prvom slučaju obično je riječ o geofizikalnim i seizmološkim istraživanjima, a u drugom o socio-ekonomskim studijama.

Klasični

uredi

Jačina zemljotresa opisuje se na dva glavna načina. U prvom koji koristi Richterovu skalu i njene varijacije, mjeri se količina kinetičke energije emitirane u hipocentru. Ova skala je logaritamska, pa svaki naredni stepen označava da je zemljotres bio deset puta jači od onog s prethodno nižim stepenom jačine. Ova skala sadrži stepene od 0 do 9,5. U drugom načinu koji koristi Mercallijevu skalu i njene varijacije, procjenjuju se posljedice zemljotresa na površini, a prema štetama za ljudsku zajednicu nastalim u okolini epicentra. Ova skala je apstraktna i sadrži stepene od II do XII. Prvi je čulno neprimjetan, dok je XII stepen katastrofalan u smislu rušenja svih građevina i značajnih izmjena reljefa.

Po dubini, zemljotresi se dijele na plitke i duboke. Pri tome se oni najplići označavaju dubinom "10 km", što se koristi i kad se plitka dubina ne može precizno utvrditi. Najdublji zabilježeni zemljotresi bili su na dubinama oko 700 km. Podjela zemljotresa po dubini nije urvrđena konvencijom. Mehanizam nastanka dubokih zemljotresa nije razjašnjen, budući da materijal na tim dubinama nije u čvrstom stanju.

 
Opis rasjeda odgovarajućom orijentacijom lopte za plažu (eng. beachball), zabilježenom tokom cijepanja. Paralelno rasjedu (strike-slip), kompresivnim nasrtanjem (thrust), i produženjem (normal).

Savremeni

uredi

Tokom posljednjih decenija razvijen je i metod karakterizacije zemljotresa određivanjem njihovog moment-tenzora. Tenzor je matematska generalizacija koncepta vektora. Ovom metodom opisuju se način i prostorna orijentacija oslobađanja kinetičke energije u žarištu, koje time više nije pojednostavljeno predstavljano tačkom, nego ga se može opisivati s određenim stepenom složenosti.

Npr. snažniji zemljotresi, koji se često nazivaju tektonski zemljotresi i koji po magnitudi dosežu 7 ili više stepeni na Richterovoj skali, sada se mogu karakterisati preciznije. To znači da ih se može opisivati u vremenu i prostorno - duž izduženih geomorfoloških struktura poput rasjeda i sl. - čak i po nekoliko stotina kilometara.

Rezultat novog pristupa je i momentna magnituda Mw, kojom se određuje veličina zemljotresa (vidi sekciju Mjerenja i opažanja). Ovim metodom je omogućeno promatranje tektonskih zemljotresa u širem tj. globalnom kontekstu, uz nadu da će to možda pomoći u utvrđivanju uzroka tektonike.

Nastanak

uredi

Pored frakture stijenske mase, uzroci slabijih zemljotresa su još i: punjenje pa pražnjenje akumulacionih jezera, rudarstvo, sezonske padavine naročito snježne, i dr. Velike kiše u stanju su lubricirati već napregnute rasjede, mijenjajući fizikalna i hemijska svojstva materijala uključujući plašt, te tako pospješiti pojavu slabijih ili jačih zemljotresa.

Uzroci tektonike kao generatora razornih zemljotresa su nepoznati. To je zato što su nejasni izvori energije neophodne za pokretanje tektonskih masa. O uzrocima pojave tektonike na Zemlji postoje najmanje četiri fizikalne hipoteze. Uzroci očito mogu biti unutarzemaljski, vanzemaljski, ili kombinacija unutarnjih i vanjskih uzroka.

Predviđanja zemljotresa još uvijek nisu moguća. Da bi neko predviđanje bilo od koristi, potrebno je da tačno prognozira magnitudu, vrijeme i lokaciju zemljotresa.

Podmorski prirodni zemljotresi nekada izazovu cunami, u dijelu okeana ili mora gdje topografija dna svojim pogodnim oblikom uvećava učinak emitirane kinetičke energije. Usljed plitkosti i relativno male veličine te zatvorenosti Jadranskog mora, mogućnost cunamija nakon zemljotresa duž južne (Italija) ili sjeverne obale (Dalmacija, bosansko, crnogorsko i albansko primorje), je praktično zanemariva.

Mehanizam nastanka potresa

uredi

Rasedi su mehanički diskontinuiteti stenskih masa, po kome se relativno kretanje blokova u datom veličinskom području ne može zanemariti. Žarišta zemljotresa nalaze se najčešće na ovim stenskim diskontiuitetima. Prema načinu postanka, rasedi se dele na: normalne (gravitacione), transkurentne i reversne rasede.
Elastični odsek se ogleda kroz periode prikupljanja i oslobađanja seizmičke energije. U prvom periodu se prikuplja energija, vrše se elastične deformacije, a trenje je još uvek veće od napona među pločama. U drugom periodu napon prevazilazi trenje među pločama, i dolazi do odskoka.

Vrste dodira ploča

uredi
 
Tri vrste dodira tektonskih ploča.

Većina razornih zemljotresa nastaje međusobnim dodirom tektonskih masa. Postoje tri vrste dodira tektonskih ploča, zavisno od načina na koji se jedna masa kreću u odnosu drugu, kao i od raznih površinskih fenomena.

  1. Transformni dodir (konzervacijski) nastaje na mjestima međusobnog proklizavanja ploča duž transformnih rasjeda. Relativno kretanje dvaju ploča može biti sinistralno (lijeva strana prema posmatraču) ili dekstralno (desna strana prema posmatraču). San Andreas rasjed u Kaliforniji, te Sarajevski rasjed su primjeri transformnog dodira s dekstralnim kretanjem.
  2. Divergentni dodir (konstruktivni) nastaje na mjestima međusobnog razilaženja dvaju ploča. Srednjeokeanske brazde kao npr. Srednjoatlantska, te aktivni tektonski rovovi kao npr. Great Rift dolina u Africi, su primjeri divergentnih dodira.
  3. Konvergentni dodir (destruktivni), zvan i aktivni obod, nastaje na mjestima gdje se dvije ploče sudaraju obično praveći subduktivnu zonu (ako jedna ploča podranja pod drugu) ili kontinentalnu koliziju (ako obje ploče sadrže kontinentalno stijenje). Duboki podmorski rovovi su obično povezani sa subduktivnim zonama. Subduktivna masa sadrži mnoge hidratne minerale. Pri zagrijavanju ovi minerali oslobađaju svoju vodu koja onda uzrokuje topljenje plašta. Tako nastaje vulkanizam, npr. planinski vijenac Ande u Južnoj Americi, te japanski ostrvski luk.

Globalna mjerenja tektonike

uredi
 
Kretanje ploča: primjer iz jedne od NASA-inih kampanja GPS mjerenja; vektori ukazuju na mogući opšti smjer i intenzitet kretanja. Drugi primjeri pokazuju drugačiji opšti smjer i intenzitet.

Vektor stvarnog kretanja tektonskih ploča je očito funkcija svih sila koje djeluju na određenu ploču. Stepen nepoznavanja doprinosa pojedinih sila kretanju pojedinih ploča je nepremostiv problem za globalne pristupe mjerenju tektonike. Jedini preostali ispravni pristup onda je razmatranje nekog pogodno odabranog relativnog mjerila kretanja ploča.

Stoga sve studije koje nastoje globalno "izmjeriti tektoniku", treba uzimati s oprezom. Dodatan izvor njihove nepouzdanosti su satelitski sistemi korišteni za određivanje lokacije (GPS, GLONASS, GALILEO i dr.). Iako su takvi sistemi vrlo precizni, takva mjerenja po definiciji nisu nikada apsolutna odnosno tačna. Naime, svi takvi satelitski sistemi su geocentrični tj. lokacija i orijentacija im je određena relativno u odnosu na centar mase Zemlje. Ti sistemi tako nemaju nijedan stepen slobode pa ih se ne može uzimati kao nezavisne tj. apsolutne mjerne sisteme. Rezultati njihovih mjerenja uvijek zavise od početno odabranog koordinatnog sistema i njegovih karakteristika poput orijentacije, rotacije, dinamike, tačnosti, preciznosti itd.

Unutrašnje sile kao pokretači tektonike

uredi

Prema Angloameričkoj školi misli u geonaukama, disipacija toplote iz plašta predstavlja dovoljan izvor energije za tektonsku aktivnost Zemlje. Po tom vjerovanju, suvišna gustoća okeanske litosfere koja tone u subduktivnim zonama je pokretač ploča, tj. ploče svoju pokretljivost duguju relativnoj gustoći okeanske litosfere i relativnoj slabosti astenosfere. Obje te pretpostavke su nepotvrđene. U tom scenariju, kada se formira u srednjeokeanskim brazdama, okeanska litosfera je za pretpostaviti manje gustoće od astenosfere pod njom, ali svojim starenjem postaje sve gušća, konduktivno se hladeći i debljajući. Veća gustoća starije litosfere u odnosu na astenosferu ispod nje navodno omogućuje tonjenje litosfere u duboke zone plašta u subdukcijskim zonama, a slabost astenosfere omogućuje lakše kretanje ploča ka subdukcijskoj zoni.[3]

Međutim, ukupna energija iz svih poznatih izvora u unutrašnjosti Zemlje kao i njene okoline, nedovoljna je da objasni pomicanje tektonskih ploča, pa uzrok tektonike ostaje nepoznat.[4] Osim toga, postoje ploče poput Sjevernoameričke i najveće Evroazijske, koje se kreću a da nigdje nisu u subdukciji sa drugim pločama. Stoga uzrok kretanja ploča ostaje predmetom intenzivnog istraživanja i debate među naučnicima .

Seizmološka tomografija za neke regione Zemlje ukazuje na lateralno (bočno) promjenjivu distribuciju gustoće u čitavom plaštu. Takve varijacije u gustoći mogu biti materijalne (usljed hemije stijena), mineralne (usljed varijabilnosti mineralnih struktura), ili termalne (putem termičkog širenja i skupljanja, usljed toplotne energije). Manifestacija ove promjenjive gustoće je konvekcija plašta iz sila potiska.[5] Zagovarači gore pomenute hipoteze o disipaciji toplote plašta kao glavnom pokretaču tektonike, tvrde i da konvekcija plašta direktno ili indirektno korespondira kretanju ploča. Dvije preostale sile za koje pobornici navedene škole misli smatraju da utiču presudno na kretanje ploča su još trenje (ili frikcija) i gravitacija. Međutim, za te tvrdnje nema dokaza, odnosno ako je uzrok konvekciji plašta i poznat, to ne objašnjava samu tektoniku.[4] Da bi ta teza bila potvrđena, ta se energija mora na predvidljiv tj. objašnjiv način transportovati u litosferu, da bi se ploče uopšte mogle pomaći. Uzroci tektonike nastavljaju biti predmetom debate i istraživanja u geodinamici.

Vanjske sile kao pokretači tektonike

uredi

Više studija od 2006. ustvrdile su da postoji trend kretanja svake ploče u smjeru zapada, a usljed Zemljine rotacije i plimne frikcije Mjeseca. Po njima, dok se Zemlja obrće prema istoku, Mjesečeva gravitacija uzrokuje malo povlačenje Zemljine površine unazad, odnosno prividno zapadno. Zaključak ovih studija je da to objašnjava zašto Venera i Mars nemaju tekroniku, pošto Venera nema mjesec, a mjeseci Marsa su premali da bi pravili značajne plimne efekte na Mars.[6][7]

Začetnik hipoteze o tektonici ploča, austrijanac Alfred Wegener, teoretizirao je da uticaji Mjeseca uzrokuju tektoniku na Zemlji. Međutim, naučna zajednica prvenstveno angloamerička, Wagenerovo objašnjenje je u to vrijeme odbacila uz objašnjenje da bi direktni Mjesečevi efekti doveli do plimne frikcije, koja bi zauzvrat davno zaustavila Zemljinu rotaciju. Indirektni efekti Mjeseca na Zemlju nisu nikada razmotreni odnosno proučeni, iako Wagener nije tvrdio da su direktni efekti poput plimne frikcije jedini mogući lunarni uzročnik tektonike.

Angloamerička škola misli u geonaukama i danas odbacuje Wegenerovo teoretiziranje o mogućem lunarnom porijeklu tektonike na Zemlji. Kao dokaz za ovu apsolutnu tvrdnju danas, koriste se gore pomenutim globalnim studijama iz relativnih (GPS i dr.) mjerenja. Međutim, zapadna komponenta kretanja svih ploča je utvrđena van svake sumnje barem u odnosu na cjelokupan donji segment plašta. Također je utvrđeno i da se čvrsta jezgra Zemlje kreće brže od ostatka planete.[8] Razlozi su nepoznati i o njima postoji više predloženih objašnjenja, npr. uticaj gravitacijske sile Mjeseca koja navodno usporava litosferu više negoli jezgru, uticaj magnetnog polja same Zemlje na svoju unutrašnju jezgru uglavnom sačinjenu od željeza, potom piezoelektricitet tako sačinjene unutrašnje jezgre, i dr.

Učestalost

uredi
 
Pacifički Vatreni prsten.

Procjenjuje se da se godišnje dogodi oko 900.000 potresa magnitude do 2.5 (po Richteru), dok su najjači ujedno i najrjeđi, i pojavljuju se svakih 5 do 10 godina. Zemlje u kojima se događa najviše potresa su Čile, Japan i Indonezija.

Pacifički Vatreni prsten (eng. the Ring of fire) je područje u bazenu Pacifičkog okeana u kom su seizmicitet i vulkanska aktivnost najaktivniji. Prsten je dio gotovo neporekidnog niza podokeanskih rovova, vulkansih lukova, te vulkanskih pojaseva i tektonskog kretanja. U ovom prstenu nalaze se 452 vulkana i preko 75% svih aktivnih i ugašenih vulkana. Naziva se još i Cirkumpacifički pojas. Oko 90% svih te 80% najsnažnijih zemljotresa na svijetu, dešava se duž Vatrenog prstena. Slijedi ga Alpidski pojas s 5–6% svih te 17% najsnažnijih, a obuhvata zonu od indonezijskih ostrva Jave i Sumatre preko planinskog masiva Himalaja, pomorja Mediterana, pa sve do Atlantskog okeana. Srednjeatlantička brazda čini treći najznačajniji trusni pojas svijeta.[9][10]

Bosna i Hercegovina se nalazi u Alpidskom trusnom pojasu. Kao i druge zemlje Balkanskog poluostrva, izložena je subdukciji Sjevernoafričke tektonske ploče i njenih dijelova pod Albansku mikroploču, te drugim tektonskim procesima. Usljed toga, zemljotresi u BiH se dešavaju najviše u južnim dijelovima, kao i u primorju. Osim juga zemlje, potencijalno katastrofalni zemljotresi u BiH dešavaju se uglavnom duž Sarajevskog tektonskog rasjeda kao najdužeg (pravac projekcije na površini: Sarajevo-Krajina), te Banjalučkog tektonskog rasjeda koji je okomit na Sarajevski i čini dio njegovog sistema rasjeda.

Prognoziranje

uredi
 
Posljedice zemljotresa u San Franciscu 1906.

Predviđanje prirodnih zemljotresa podrazumijeva prognoziranje i magnitude i vremena i lokacije. Dosadašnji pokušaji pristupa problemu predviđanja bili su neuspješni. To je prvenstveno zbog toga što je nepoznat objedinjavajući fizikalni princip koji uzrokuje tektoniku kao glavnog generatora seizmiciteta na Zemlji.

Statistička seizmologija koristi statističke metode i istoriju dosadašnjeg seizmiciteta, koja ide milione godina u prošlost, u pokušaju tipizacije i mogućeg predviđanja budućih zemljotresa. Njen uspjeh u seizmičkom prognoziranju je minoran, ali ona ima veliku važnost u utvrđivanju parametara seizmičke opasnosti pojedinih regija, te s tim u vezi mikrorejonizacijom manjih prostora kao što su lokacije građevinskih objekata. Njena uloga je prvenstveno u utvrđivanju zakonskih akata u građevinarstvu, odnosno određivanju zakonskih mjera koje obavezuju na aseizmičku gradnju. Te mjere građevinski sektor mora poštivati kako bi se u umanjio ili izbjegao gubitak ljudskih života u slučaju zemljotresa. Statistička seizmologija je od direktne koristi za sektore finansija i osiguranja.

Vještački izazvani zemljotresi

uredi

Vještački zemljotresi izazvani su ljudskim djelovanjem. Najčešće se izazivaju detoniranjem eksplozivnih naboja. Detonacije se najviše koriste u podzemnom kartiranju područja ili većih regija, npr. u premjerima eksploatacijske geofizike. Primjenjuju se još i u kontinentalnim naučnim istraživanjima, kad se koriste velike količine eksploziva, obično i po više tona TNT-a odjednom. Ovakve detonacije izazivaju zemljotrese jačine do nekoliko stepeni Richterove skale, koje karakteriše prisutnost samo površinskih talasa.

Elementi zemljotresa

uredi

Tačka zemljotresa na mestu inicijalne rupture (mesto oslobađanja energije) naziva se fokus ili hipocentar. Tačka na površini Zemlje direktno iznad hipocentra naziva se epicentar.

Hipocentar ili žarište zemljotresa je mesto u unutrašnjosti Zemljine kore od koga počinju da se prostiru seizmički talasi, odnosno mesto na kome se dešava elastični odskok.

Epicentar je ortogonalna projekcija hipocentra na površinu Zemlje, odnosno to je mesto na površini Zemlje na kome se potres najjače oseća.

Potres se širi u talasima, a linije kojima na karti spajamo mesta jednake jačine potresa nazivamo izoseiste.

Prema načinu i brzini širenja, potresi mogu biti s longitudalnim ili primarnim te sekundarnim ili transverzalnim talasima. Longitudinalni su najbrži i prostiru u smeru širenja, dok transverzalni izazivaju strmo prostiranje čestica i šire se samo kroz čvrstu građu. Drugi talasi uzrokuju kružno i vodoravno prostiranje te imaju najslabiji učinak.

Merenje jačine potresa

uredi
 
Potres u San Francisku 1906. godine

Jačina potresa zavisi od više činilaca kao što su količina oslobođene energije, dubina hipocentra, udaljenosti epicentra i građi Zemljine kore.
Intenzitet zemljotresa odražava rušilački efekat zemljortresa na površi Zemlje. Izražava se različitim skalama, od kojih se u Evropi najčešće primenjuju MCS i MSK - 64 skale od 12 stepeni.

Magnituda zemljotresa predstavlja jedinicu mere količine oslobođene energije u hipocentru. Izražava se magnitudnom skalom Rihtera koja ima 9 stepeni.

Nauka koja se bavi potresima naziva se seizmologija, no uprkos njenom napretku i novim saznanjima, teško je predvideti pojavu potresa i njegove posledice.

Zemljotresi

uredi
 
Seizmometar koji mjeri sve tri komponente (x,y,z) lokalnog pomjeranja tla. Senzor za horizontalnu komponentu x (istok-zapad) i okomiti senzor za horizontalnu komponentu y (sjever-jug).

Jačinu tj. intenzitet zemljotresa najčešće bilježe namjenski instrumenti - seizmometri (ili seizmografi). Može ih se naći u desetinama hiljada seizmoloških opservatorija širom svijeta. Oni manje osjetljivi mjere zemljotrese lokalno i regionalno, a osjetljiviji (širokopojasni, eng. broadband) i globalno. Jačina zemljotresa se označava brojem tj. magnitudom na skali koja predstavlja kontinuirani porast oslobođene energije ili njenog efekta. Glavne vrste magnituda su lokalne ML koje su danas rijetko u upotrebi, zatim površinske Ms odnosno tjelesne Mb koje su našle široku primjenu u 20. vijeku, te momentne Mw koje opisuju veličinu zemljotresa. Svi snažniji zemljotresi danas se izražavaju u Mw, ili skraćeno M.

 
Tipični seizmogram, sa sve tri komponente ubrzanja lokalnog smicanja tla usljed talasa kinetičke energije iz zemljotresa.

Dostignuti nivo oslobođene energije obično se mjeri u sve tri prostorne komponente (x,y,z) lokalnog pomaka tla. Tako se seizmometar u većini slučajeva sastoji iz tri senzora (za svaku komponentu po jedan) koji sadrže slobodno osovljeni dio koji je kao takav podložan promjeni položaja instrumenta. Rezultat rada seizmometra je zapis mjerenja lokalnog pomaka po pojedinoj komponenti. Ovaj zapis naziva se seizmogram. Kod analognog seizmometra, seizmogram je grafički zapis mjerenja slobodno osovljene pisaljke koja prividno klizi po rotirajućem dobošu s namotanim kolutom papira. Kod digitalnog seizmometra, seizmogram je datoteka mjerenja razlika u strujnom naponu stvorenih pokretima slobodno osovljenog dijela.

Jačina zemljotresa može se mjeriti i drugim instrumentima. Najjednostavniji su geofoni, u biti osjetljivi mikrofoni za mjerenje jačine odnosno brzine energije tj. talasa. Složeniji alternativni instrumenti su gravimetri, čija je osnovna namjena mjerenje gravitacijskog ubrzanja ili ubrzanja mase. Gravimetri osjete vertikalnu (z) komponentu, koju su u stanju mjeriti jednako precizno kao i seizmometri. U nekim slučajevima gravimetri nadmašuju seizmometre, što je od koristi za geofizikalna istraživanja duboke unutrašnjosti, prvenstveno jezgre naše planete.

Bilježenja zemljotresa u našoj zemlji vrše se preko jednog vijeka, a otpočela ih je Austro-Ugarska instaliranjem prvog (širokopojasnog) seizmometra u seizmološkoj opservatoriji Sarajevo 1905. godine, u sklopu istraživačkih aktivnosti vezanih za prvu Internacionalnu polarnu godinu 1883.

Instrumentalno registrovanje zemljotresa

uredi

Seizmoskopi regitruju samo da se desio zemljotres, i eventualno amplitudu zemljotresa, tako da se može odrediti intenzitet. Prvi poznati seizmoskop napravljen je u Kini, i datira od oko 4000 godina pre nove ere. Pomoću njega bilo je moguće odrediti pravac iz koga su dolazili trusni talasi.

Seizmografi registruju vremensku istoriju potresa. Oscilacije se mehanički ili na neki drugi način prenose na traku koja se kreće ujednačenom brzinom, najčešće 60 ili 120 mm u minutu.

Optički seizmografi registruju vremensku istoriju potresa na foto osetljivom papiru. Oscilacije se prenose preko elektronskih sklopova uz odgovarajuće pojačanje.

Akcelerografi mere ubrzanje pri oscilovanju čestica tla.

Detonacije i nuklearni testovi

uredi

Seizmički talasi koriste su u prepoznavanju fizikalnih i hemijskih osobina ne samo globalnih nego i lokalnih podzemnih struktura. Za tu namjenu ne bi bilo isplativo čekati pogodne prirodne zemljotrese pa se vibracije tla izazivaju vještački, obično detonacijom eksplozivnih naboja. Detonacije slabije jačine koriste se u građevinarstvu i rudarstvu odnosno eksploatacijskoj geofizici, a one jače i u naučnim eksperimentima i istraživanju, te nuklearnim testovima.

Uz slabije detonacije najčešće se koriste geofoni. Zahvaljujući relativno niskoj cijeni, geofoni se često koriste u velikom broju i za više serija mjerenja. U tu svrhu se signalno povežu kablom ili bežično, uz naročito pozicioniranje na terenu prije izazivanja vibracija. Vibracije se izazivaju eksplozivom ili pomoću mehaničkih kompresora tla kao što su vibroseizmičke prese često montirane na posebne kamione. Ovakav pristup omogućuje trenutno "uslikavanje" podzemlja, odnosno određivanje jačine, brzine i pravca prostiranja talasa. Analizom takvih podataka onda se mogu izvoditi zaključci o svojstvima, vrsti te rasprostranjenosti pojedinih podzemnih struktura, kao npr. ruda, vode, nafte i dr.

Uz snažnije detonacije primjenjuju se seizmološke, geofizikalne te geodetske metode mjerenja i instrumentarij. Njih koriste naučni i vojni instituti, potom institucije i organi vlasti, kao i internacionalna tijela za kontrolu provođenja sporazuma o zabrani testiranja nuklearnog oružja. Detonacije takvog oružja proizvode uglavnom samo površinske talase, intenziteta do 3-4 stepena Richterove skale. Nalaze se samo u seizmogramima osjetljivijih seizmometara i gravimetara. Kao i mnogi drugi geofizikalni podaci, npr. oni od važnosti za detekciju zaliha sirovina i vojne namjene, takvi seizmogrami bez izuzetka predstavljaju državnu tajnu najvišeg stepena.

Potresi na drugim nebeskim tijelima

uredi

Posrednim, uglavnom astronomskim, opažanjima dolazi se do podataka od značaja u astrofizici. Npr. astronomskim osmatranjima akustičnih svojstava Sunca i solarne korone, dobivaju se korisne informacije o eksplozivnim događanjima na toj zvijezdi, odnosno njenim fizikalno-hemijskim svojstvima.

Efekti i posledice

uredi

Klizanje tla

uredi

Zemljotresi mogu aktivirati pokretanje tla na padinama (klizanje), odlamanje kamenih blokova i nastanak odrona i pokretanje lavina koje mogu u brdsko-planinskim predelima naneti veliku materijalnu štetu i ugroziti ljudske živote.

Požari

uredi

Požari mogu biti pratioci zemljotresa pri čemu oni obično mogu biti izazvani kidanjem električnih vodova i gasnih infrastrukturnih pravaca.

Likvefakcija tla

uredi

Likvefakcija nastaje, kada usled trešenja tla, vodom zasićeni granularni materijal privremeno izgubi čvrstoću i počne da se ponaša kao tečnost. Ova pojava može uzrokovati znatne štete, kako na mostovima tako i na zgradama, koji se obično naginju ili tonu u otečnjeni sediment.

Cunami

uredi
 
Širenje cunamija od potresa u Indijskom okeanu 2004. godine

Potresi s epicentrom na dnu mora izazivaju talase su cunami koji mogu dosegnuti visinu i do 30 m (Cunami u Indijskom okeanu 2004.).

Procenjuje se da godišnje ima oko 900,000 potresa magnitude do 2.5 (po Rihteru) a oni jači su ređi i pojavljuju se svakih 5 do 10 godina.

Najopasnija područja

uredi

Najveći broj zemljotresa vezan je za granice litosfernih ploča. Pritom, najjači zemljotresi generišu se u zonama sučeljavanja ploča, u prostoru gde se jedna ploča podvlači pod drugu. Najizrazitija takva zona je u vatrenom pojasu Pacifika, gde se dogodi 53% svih potresa. Druga po redu zona po broju potresa je mediteransko-alpsko-himalajsko područje (41% svih potresa). Zemlje u kojima se događa najviše potresa su: Čile (povezano sa subdukcijom Naska ploče ispod Južnoameričke ploče), Japan (subdukcija Pacifičke ploče pod Evroazijsku ploču), Indonezija.

Najjači potresi

uredi
  • Potres u Skoplju, Makedonija, 26. jul 1963, poginulo oko 1000 ljudi
  • Potres u Kašmiru 2005. g., u kom je poginulo 90,000 a povređeno 110,000 ljudi.
  • Potres u Indijskom okeanu 2004. g., jedan od najjačih potresa ikad zabeleženih s jačinom od 9,3 stepena po Rihteru s epicentrom na obali Indonezijskog ostrva Sumatre koji je pokrenuo veliki cunami koji je odneo preko 250.000 života.
  • Tanšanski potres 1976, najdestruktivniji potres modernih vremena, procenjuje se da je u njemu stradalo oko 245.000 ljudi.
  • Šanhi potres (1556.) Najsmrtonosniji potres u istoriji čovečanstva za koji se procenjuje da je odneo 830.000 ljudskih života u Kini.
  • Potres u Čileu (22. maj 1960) - Zahvatio je površinu od 140.000 km² u blizini grada Valdivia. Zemljište je spušteno za 2 metra, nekoliko gradova je zbrisano, 25 ostrva čileanskog arhipelaga je potopljeno, a izdugnuta su neka nova. Reke Čilean, Rio Bio i Nuble su promenile su pravac kretanja. Kao prateća pojava, proradio je i vulkan Riniče, nakon 40 godina mirovanja. Topografske karte su bile neupotrebljive. Poginulo je oko 6.000 stanovnika. Ovo je najjači zemljotres zabeležen ikada, zabeležena je jačina od 9,5 stepeni Rihtera i 12 stepeni MKZ skale.

Povezano

uredi

Izvori

uredi
  1. Luka Lj. Pešić:Opšta geologija, Endodinamika, Beograd,1995, ISBN 86-80887-58-7
  2. Bullen, K. E., Bolt, B.A. (Editor) An Introduction to the Theory of Seismology. Cambridge University Press. 4. izdanje 1987, 520 strana. ISBN 0-521-28389-2.
  3. Pedro Mendia-Landa. „Myths and Legends on Natural Disasters: Making Sense of Our World”. Pristupljeno 2008-02-05. 
  4. 4,0 4,1 Stevenson, David J. A planetary perspective on the deep Earth. Nature 451(7176):261-265, 17 Jan 2008. [1] Arhivirano 2016-03-05 na Wayback Machine-u
  5. Tanimoto Toshiro, Lay Thorne (2000-11-07). „Mantle dynamics and seismic tomography”. Proceedings of the National Academy of Science 97 (23): 12409–12410. DOI:10.1073/pnas.210382197. ISSN 0027-8424. PMID 11035784. 
  6. Lovett, Richard A. Moon Is Dragging Continents West, Scientist Says. National Geographic News, 01.24.2006. [2]
  7. Riguzzi, F., Panza, G., Varga, P., Doglioni, C. Can Earth's rotation and tidal despinning drive plate tectonics? Tectonophysics, Corrected Proof, 2009. doi:10.1016/j.tecto.2009.06.012
  8. „Earth's core rotates faster than its crust, scientists say. News by University of Illinois at Urbana-Champaign.”. Arhivirano iz originala na datum 2017-04-22. Pristupljeno 2015-07-03. 
  9. U.S. Geological Survey Earthquakes FAQ.
  10. U.S. Geological Survey Earthquakes Visual Glossary.

Literatura

uredi
  • Deborah R. Coen. The Earthquake Observers: Disaster Science From Lisbon to Richter (University of Chicago Press; 2012) 348 pages; explores both scientific and popular coverage
  • Donald Hyndman, David Hyndman (2009). „Chapter 3: Earthquakes and their causes”. Natural Hazards and Disasters (2nd izd.). Brooks/Cole: Cengage Learning. ISBN 0-495-31667-9. 

Vanjske veze

uredi