Vodena para je voda u plinovitom obliku. Para se sastoji od mnogo slobodnih lebdećih molekula vode (H2O).

Vodena para

Vodena para je bezbojan plin. Pri normalnim tlakom od 1,013 bara, voda vrije na 100 °C. Jedan kg vode prelazi u 1,673 m3 vodene pare. To zahtijeva energiju od 2,257 kJ. Vodena para je kao staklenički plin dio atmosfere. Atmosferska vodena para je najučinkovitiji staklenički plin i uzrokuje, da je prosječna temperatura na Zemlji oko 15 °C i što je pogodno za život i razvoj živih bića.

Vodena para ima važnu ulogu u industriji. Zajedno s vodom važan je medij za prijenos topline, električne energije ili čak i za mehanički rad. Vodena je para tijekom prve polovice 19. stoljeća, postala primarna pokretačka snaga industrije i prometa. Tako se 19. stoljeće ponekad naziva i stoljećem pare. I danas se vodena para koristi za pogon turbina za termoelektrane, nuklearne elektrane, a imat će primjenu i u budućnosti.

Vodena para je plinovito stanje vode. Ona može nastati hlapljenjem, isparavanjem vode ili sublimacijom leda. Vodena para je lakša od zraka i zato su prisutne stalno konvekcijske struje u Zemljinoj atmosferi, koji je podižu i stvaraju oblake. Ona je jaki staklenički plin, uz ostale plinove kao što su ugljikov dioksid i metan.

Svojstva uredi

 
Oblaci, stvoreni kondenzacijom vodene pare

Hlapljenje uredi

Kada molekula vode napusti svoju površinu, kaže se da hlapi. Hlapljenje je oblik isparavanja kapljevine koji se odvija na temperaturama nižim od vrelišta. Iako na tim temperaturama prosječna energija molekula kapljevine nije dovoljna za promjenu agregatnog stanja, molekule na slobodnoj površini koje imaju dovoljnu energiju odvajaju se od površine pa kapljevina postepeno isparava. Vodena para koja nastaje od tekuće vode, uzima sa sobom i dio topline, koju nazivamo hlađenje hlapljenjem.[1]

Iznos hlapljenja ovisi o mnogim utjecajima, a u prosjeku je od 750 do 3 000 mm godišnje po kvadratnom metru. Vlažnost zraka određuje količinu vodene pare u atmosferi. Higrometar je uređaj za mjerenje vlažnosti zraka. Apsolutna vlažnost zraka - maksimalna količina vodene pare koju može primiti 1m3 zraka (u gramima)kod neke temperature. Apsolutna vlažnost zraka raste s porastom temperature (-> veće isparavanje). Specifična vlaga zraka jest broj grama vodene pare u 1 kg vlažnog zraka. Relativna vlaga zraka je broj koji pokazuje odnos između količine vodene pare koja stvarno postoji u zraku u nekom trenutku i maksimalne količine vodene pare koju bi taj zrak na toj temperaturi mogao primiti da bi bio zasićen. Apsolutna vlažnost zraka se mijenja od 5 g vodene pare na kubični metar kod 0 °C, do 30 g na kubični metar pri 30 °C.[2]

 
Tropske šume su primjer velike vlažnosti zraka

Kondenzacija uredi

Vodena para će se kondenzirati na neku površinu samo ako je površina hladnija od temperature rosišta. Temperatura rosišta je temperatura do koje se vlažan zrak mora hladiti (100% relativne vlage zraka), kod konstantnog tlaka, da počne kondenzacija vode. Kada se vodena para kondenzira, ona donosi i određenu količinu topline, znači da zagrijava površinu na kojoj se kondenzira. U isto vrijeme, vlažni zrak se neznatno hladi. U atmosferi, kondenzacijom vlažnog zraka stvaraju se oblaci i magla, na jezgrama kondenzacije.

Mjerenje uredi

Glavni članak: Vlagomjer

Od mnogih mjerila za vlažnost zraka, samo se relativna vlažnost može očitati na jednom instrumentu. Instrumenti za mjerenje relativne vlažnosti zraka zovu se vlagomjeri (higrometri). U početku, ali još i danas, u higrometrima se iskorištavalo svojstvo organskih tvari, naročito kose, da se rastežu upijanjem vodene pare. Danas postoje i digitalni higrometri, koji koriste metalne ili keramičke djelove, a mijenjaju električni otpor ovisno o količini vlage u zraku.

Drugi način određivanja relativne vlažnosti je posrednim putem iz psihrometrijskih mjerenja. Psihrometar je instrument koji se sastoji od dva jednaka termometra. Posudica jednog termometra je omotana platnenom krpicom i ona se namoči destiliranom vodom. Taj se termometar naziva mokri termometar, za razliku od drugog koji se naziva suhi termometar. S krpice mokrog termometra voda hlapi, pa se njemu snizuje temperatura. Što je manja relativna vlažnost zraka, to je i veća razlika temperature između vlažnog i suhog termometra. Poznavajući suhu i mokru temperaturu, iz psihrometrijskih tablica moguće je odrediti relativnu vlažnost zraka, stvarni i ravnotežni tlak pare, te temperaturu rosišta.[3]

 
Temperatura rosišta ili zasićenje vodene pare ovisno o temperaturi

Gustoća vodene pare uredi

Vodena para ima manju gustoću od zraka, a to znači vodena para stvarati uzgon prema gore u zraku.

Gustoća vodene pare i zraka uredi

Molekularna masa vode je 18,02 g/mol. Prosječna molekularna masa Zemljine atmosfere je 28,57 g/mol kod standardne temperature i tlaka. Koristeći Avogadrov zakon i jednadžbu stanja idealnih plinova, zrak i vodena para će imati molarni obujam od 22,414 litre.

Kod 0 °C i standardnog tlaka, zrak će imati vrlo malu količinu vodene pare, najviše 4,8 g/m3. Gustoća zraka kod istih uvjeta je najviše 1 293 g/m3.

Kako temperature raste, tako se i količina vodene pare u zraku povećava i zamjenjuje sve više molekule zraka po Avogadrovom zakonu. Povećanje temperature, a time i količine vlage u zraku, povećati će i sile uzgona prema gore, pogotovo iznad 25 °C, što značajno utječe na sisteme ciklona i anticiklona.

Vodena para i disanje uredi

Kako temperatura raste, tako i molekule vode sve više zamjenjuju ostale molekule zraka, pa i molekule kisika. To može otežati disanje, pogotovo kada je zrak topliji od 35 °C i kada je vlažnost zraka velika, kao u tropskim kišnim šumama ili u prostorijama gdje je slaba ventilacija.

Vodena para u Zemljinoj atmosferi uredi

 
Povećanje vodene pare u stratosferi u mjestu Boulder, Colorado.

Vodena para prestavlja mali dio u Zemljinoj atmosferi, ali ekološki vrlo značajni udio. Koncentracija vodene pare se kreće od tragova iznad pustinja do 4% od atmosfere iznad oceana. Oko 99,13% vodene pare je sadržano u troposferi. Kondenzacijom vodene pare stvaraju se oblaci, snijeg i ostale oborine. Kondenzacijom dolazi i do oslobađanja topline isparavanja, koja ima značajan utjecaj na klimu. Na primjer, toplina isparavanja je izravno odgovorna za snažne tropske oluje i jake grmljavinske oluje.[4]

Vodena para je veoma jaki staklenički plin, zahvaljući prisutnosti hidroksilne veze (OH), koja jako upija infracrveno zračenje svjetlosnog spektra. Ako dolazi do povećanja temperature, povećat ce se i količina vodene pare u atmosferi, što će dalje povećavati upijanje infracrvenog zračenja. Ali, što se tiče globalnog zatopljenja, još nije poznat utjecaj naoblake sa povećanjem temperature.

Vodena para koja padne sa oborinama, zamjeni se hlapljenjem vode iz mora, jezera, rijeka i iz biljaka. Kružni ciklus oborina i hlapljenja (hidrološki ciklus) traje približno 9 do 10 dana.

Radar i vodena para uredi

Vodena para u atmosferi upija mikrovalove i ostale radio valove, pa na taj način slabi signal radara.[5]

 
Komet Hale-Bopp, viđen 29. ožujka 1997. u Pazinu, Hrvatska.

Stvaranje munja uredi

Vodena para igra važnu ulogu u stvaranju munja u atmosferi. Oblaci stvaraju veliku količinu električnog naboja. Kada je mala vlažnost zraka, stvaranje statičkog naboja je lagano i brzo, dok kod velike vlažnosti, malo statičkog naboja se stvara.[6]

Vanzemaljska vodena para uredi

Sjaj repova kometa dolazi uglavnom od vodene pare. Kada se komete približavaju Suncu, led iz kometa sublimira u vodenu paru, koja reflektira svjetlost sa Sunca. Ako znaju koliko je udaljena od Sunca, astronomi mogu procjeniti količinu vode u kometi. Kod udaljenih i hladnih kometa, sjaj repa upućuje na prisutnost ugljikovog monoksida.[7]

Spektroskopska analiza ekstrasolarnog planeta HD 209458 b, u zviježđu Pegaz, omogućila je prvi dokaz o postojanju vodene pare izvan Sunčevog sustava.[8]

Veze uredi

Izvori uredi

  1. Schroeder David: Thermal Physics. 2000, Addison Wesley Longman. p36
  2. [1] Encyclopædia Britannica
  3. [2] Arhivirano 2011-05-17 na Wayback Machine-u Meteorološka mjerenja II dio, Janja Milković
  4. [3] Flight training
  5. Skolnik Merrill: Radar Handbook, 2nd ed. 1990, McGraw-Hill, Inc. p23.5
  6. Shadowitz Albert: The Electromagnetic Field. 1975, McGraw-Hill Book Company. pp165-171.
  7. [4] Arhivirano 2013-07-30 na Wayback Machine-u "ANATOMY OF COMETS", Retrieved December 2006.
  8. Lloyd Robin: "Water Vapor, Possible Comets, Found Orbiting Star", 2001., Space.com