Pravilo derivacije složene funkcije

U kalkulusu, pravilo derivacije složene funkcije je formula za derivaciju kompozicije dvije funkcije.

Oblasti u matematičkoj analizi

Fundamentalna teorema
Limes funkcije
Kontinuitet
Vektorska algebra
Tenzor
Teorem srednje vrijednosti

Diferencijacija

Derivacija proizvoda
Derivacija količnika
Derivacija složene funkcije
Implicitna diferencijacija
Taylorova teorema
Tablica izvoda

Integracija

Spisak integrala
Neodređeni integral
Određeni integral
Višestruki integral
Nepravi integrali
Parcijalna integracija
Integracija metodom substitucije
Trigonometrijska substitucija

U intuitivnim uvjetima, ako varijabla y zavisi od druge varijable u, koja, na kraju, zavisi od treće varijable x, tada se način promjene y o odnosu na x može izračunati kao promjena y o odnosu na u pomnoženo sa načinom promjene u u odnosu na x. Jednostavnije rečeno, derivacija složene funikcije računa se tako pomnoži derivacija glavne funkcije sa derivacijom podfunkcije unutar te glavne funkcije (pogledajte primjer I).

DefinicijaUredi

Pravilo derivacija složene funkcije kaže da je

 

koje se kraće piše u formi  .

Alternativno, u Leibnizovoj notaciji, pravilo derivacije složene funkcije je

 

U integraciji, nasuprot pravilu derivacije složene funkcije, stoji pravilo substitucije.

PrimjeriUredi

Primjer IUredi

Razmotrimo  . Imamo   gdje je   i   Zbog toga,

   
 

Kako bi diferencirali trigonometrijsku funkciju

 

možemo pisati   sa   i  . Tada dobijamo

 

pošto je   i  .

Primjer IIUredi

Difercencirajmo  , itd.

 
 
 

Također pogledajteUredi