Otvori glavni meni

Ugljena kiselina

(Preusmjereno sa Ugljična kiselina)

Ugljična kiselina (karbonatna kiselina, (O=C(OH)2), H2CO3) slaba je anorganska kiselina. Nastaje otapanjem ugljikova(IV) oksida u vodi, no vrlo mala količina CO2 izreagira sa vodom, jer se čak 99 % CO2 u vodi nalazi u molekularnom stanju. U industriji se karbonatna kiselina koristi za proizvodnju pjenušavih (gaziranih) pića jer pićima daje kiselkast osvježavajuć okus, a nije opasna za čovjeka. Karbonatna kiselina se spontano raspada na CO2 i H2O.

Ugljena kiselina
Structural formula
Ball-and-stick model
IUPAC ime
Drugi nazivi Rastvor ugljen dioksida; Dihidrogen karbonat; vazdušna kiselina
Identifikacija
CAS registarski broj 463-79-6 YesY
ChemSpider[1] 747 YesY
KEGG[2] C01353
ChEBI 28976
ChEMBL[3] CHEMBL1161632 YesY
Jmol-3D slike Slika 1
Svojstva
Molekulska formula H2CO3
Molarna masa 62.03 g/mol
Gustina 1.0 g/cm3 (rastvor)
Tačka topljenja

n/a

Rastvorljivost u vodi postoji samo ur rastvoru
pKa 6.352 (pKa1)

 YesY (šta je ovo?)   (verifikuj)

Ukoliko nije drugačije napomenuto, podaci se odnose na standardno stanje (25 °C, 100 kPa) materijala

Infobox references
CO2 + H2O → H2CO3

Iako se spojevi koji imaju dvije hidroksilne grupe na istom ugljikovom atomu mogu rijetko izolirati u čistu stanju, izgleda da oni mogu postojati u vodenoj otopini. Za takav primjer u kemiji je najbolja ugljična kiselina, koja se u vodenoj otopini ponaša kao dvobazna kiselina, ali se može izolirati samo u obliku svojih soli ili estera, ili kao anhidrid (tj. ugljikov dioksid).

Karbonatna kiselina disocira otapanjem u vodi i stvara dvije vrste iona; hidrogenkarbonatni i karbonatni ion.

H2CO3 + H2O → HCO3- + H3O+
HCO3- + H2O → CO32- + H3O+

Pa tako stvara karbonatne (kalcijev karbonat, natrijev karbonat ...) i hidrogenkarbonatne (natrijev hidrogenkarbonat, kalcijev hidrogenkarbonat ...) soli.

Kalcijev karbonat (CaCO3) ili vapnenac najvažniji je karbonat koji izgrađuje mnoge planinske lance (Dinara, Velebit, Alpe...), a i različiti organizmi od njega grade svoje ljušturice, kućice i oklope jer je vapnenac gotovo netopljiv u vodi. Često se zna i pojavljivati sa magnezijevim karbonatom u obliku dolomita (CaMg(CO3)2).

Stvaranje špiljskih ukrasaUredi

Voda koja isparava u vapnenačkim špiljama spaja se sa ugljikovim dioksidom iz zraka te nastaje karbonatna kiselina. Karbonatna kiselina potom otapa vapnenac i stvara sa njim u vodi topljivi kalcijev hidrogenkarbonat (Ca(HCO3)2):

CaCO3 + H2O + CO2 → Ca(HCO3)2

Isparavanjem vode iz zasićene otopine kalcijeva hidrogenkarbonata oslobađa se ugljikov dioksid a izlučuje se netopivi kalcijev karbonat koji stvara stalaktite, stalagmite i stalagmate.

Natrijev hidrogenkarbonat (NaHCO3) može se kupiti u svakoj trgovini pod nazivom soda bikarbona ili natrijev bikarbonat, a služi pri izradi tijesta, za ublažavanje želudačn kiseline (antacidno sredstvo) tj. žgaravice itd. U industriji sodu bikarbonu možemo pronaći u šumećim tabletama koja reagira sa kiselinama u tableti i oslobađa CO2 koji šumi i pjeni. U našem želucu nalizi se 0,5 %-tna klorovodična kiselina pa tako natrijev hidrogenkarbonat s njom u reakciji daje natrijev klorid tj. kuhinjsku sol.

NaHCO3 + HCl → NaCl + H2O + CO2

U antacidnim sredstima tj. sredstvima koji suzbijaju jaku kiselinu mogu se naći i magnezijev karbonat (MgCO3) i magnezijev hidrogenkarbonat (Mg(HCO3)2).

U prirodi osim kalcijeva možemo pronaći i željezov(II) karbonat , a nalazimo ga u mineralu sideritu (FeCO3), vrijednom mineralu željeza.

Svi karbonatni spojevi mogu se dokazati s nekom kiselinom koja je jača od ugljične pa zato je iz njezinih spojeva istiskuje u obliku vode i dioksida, a prisustvo ugljikova dioksida može se dokazati vapnenom vodom tj. bistom otopinom kalcijeva hidoksida (bistra kalcijeva lužina).

ReferenceUredi

  1. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). "Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining". J Cheminform 2 (1): 3. PMID 20331846. doi:10.1186/1758-2946-2-3.  edit
  2. Joanne Wixon, Douglas Kell (2000). "Website Review: The Kyoto Encyclopedia of Genes and Genomes — KEGG". Yeast 17 (1): 48–55. doi:10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H. 
  3. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. (2012). "ChEMBL: a large-scale bioactivity database for drug discovery". Nucleic Acids Res 40 (Database issue): D1100–7. PMID 21948594. doi:10.1093/nar/gkr777.  edit

LiteraturaUredi

  • Welch M. J., Lipton J. F., Seck J. A. (1969). "Tracer studies with radioactive oxygen-15. Exchange between carbon dioxide and water". J. Phys. Chem. 73 (335): 3351. doi:10.1021/j100844a033. 
  • Jolly, W. L. (1991). Modern Inorganic Chemistry (2nd Edn.). New York: McGraw-Hill. ISBN 0-07-112651-1. 
  • Moore M. H., Khanna R. (1991). "Infrared and Mass Spectral Studies of Proton Irradiated H2O+Co2 Ice: Evidence for Carbonic Acid Ice: Evidence for Carbonic Acid". Spectrochimica Acta 47A: 255–262. doi:10.1016/0584-8539(91)80097-3. 
  • W. Hage K. R. Liedl, Mayer E. Hallbrucker A. (1998). "Carbonic Acid in the Gas Phase and Its Astrophysical Relevance". Science 279 (5355): 1332–1335. PMID 9478889. doi:10.1126/science.279.5355.1332. 
  • Hage W., Hallbrucker A., Mayer E. (1993). "Carbonic Acid: Synthesis by Protonation of Bicarbonate and Ftir Spectroscopic Characterization Via a New Cryogenic Technique". J. Am. Chem. Soc. 115: 8427–8431. doi:10.1021/ja00071a061. 
  • Hage W., Hallbrucker A., Mayer E. (1995). "A Polymorph of Carbonic Acid and Its Possible Astrophysical Relevance". J. Chem. Soc. Farad. Trans. 91: 2823–2826. doi:10.1039/ft9959102823. 

Spoljašnje vezeUredi