Fenproporeks je organsko jedinjenje, koje sadrži 12 atoma ugljenika i ima molekulsku masu od 188,269 Da.[4][5][6]

Fenproporeks
Klinički podaci
Robne marke Desobesi-M, Feprorex, Lipenan, Perphoxene
AHFS/Drugs.com Monografija
Identifikatori
CAS broj 16397-28-7
ATC kod nije dodeljen
PubChem[1][2] 61810
DrugBank DB01550
ChemSpider[3] 55690
Hemijski podaci
Formula C12H16N2 
Mol. masa 188,269
SMILES eMolekuli & PubHem
Farmakokinetički podaci
Izlučivanje Renalno
Farmakoinformacioni podaci
Trudnoća ?
Pravni status

Osobine uredi

Osobina Vrednost
Broj akceptora vodonika 2
Broj donora vodonika 1
Broj rotacionih veza 5
Particioni koeficijent[7] (ALogP) 2,0
Rastvorljivost[8] (logS, log(mol/L)) -3,5
Polarna površina[9] (PSA, Å2) 35,8

Reference uredi

  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.  edit
  2. Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1. 
  3. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  4. Bray, George A. A concise review on the therapeutics of obesity. Nutrition 16.10 (2000): 953-960.9
  5. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011). „DrugBank 3.0: a comprehensive resource for omics research on drugs”. Nucleic Acids Res. 39 (Database issue): D1035-41. DOI:10.1093/nar/gkq1126. PMC 3013709. PMID 21059682.  edit
  6. David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali (2008). „DrugBank: a knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Res 36 (Database issue): D901-6. DOI:10.1093/nar/gkm958. PMC 2238889. PMID 18048412.  edit
  7. Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o. 
  8. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573.  edit
  9. Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286.  edit

Literatura uredi

Spoljašnje veze uredi