RNASEH1
(Preusmjereno sa stranice RNH1)
edit |
Ribonukleaza H1, takođe poznata kao RNaza H1, je enzim, koji je kod ljudi kodiran RNASEH1 genom.[1][2][3] RNaza H1 je nespecifična endonukleaza koja katalizuje presecanje RNK hidrolitičkim mehanizmom.
Ribonukleaza H1 | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
PDB prikaz baziran na 2qk9. | |||||||||||
Dostupne strukture | |||||||||||
2QK9, 2QKB, 2QKK, 3BSU | |||||||||||
Identifikatori | |||||||||||
Simboli | RNASEH1; H1RNA; RNH1 | ||||||||||
Vanjski ID | OMIM: 604123 MGI: 1335073 HomoloGene: 2202 GeneCards: RNASEH1 Gene | ||||||||||
EC broj | 3.1.26.4 | ||||||||||
| |||||||||||
Ortolozi | |||||||||||
Vrsta | Čovek | Miš | |||||||||
Entrez | 246243 | 19819 | |||||||||
Ensembl | ENSG00000171865 | ENSMUSG00000020630 | |||||||||
UniProt | O60930 | E9QLN8 | |||||||||
Ref. Sekv. (iRNK) | NM_002936 | NM_011275 | |||||||||
Ref. Sekv. (protein) | NP_002927 | NP_035405 | |||||||||
Lokacija (UCSC) | Chr 2: 3.59 - 3.61 Mb | Chr 12: 28.65 - 28.66 Mb | |||||||||
PubMed pretraga | [1] | [2] |
Reference
uredi- ↑ „Entrez Gene: ribonuclease H1”.
- ↑ ten Asbroek AL, van Groenigen M, Jakobs ME, Koevoets C, Janssen B, Baas F (June 2002). „Ribonuclease H1 maps to chromosome 2 and has at least three pseudogene loci in the human genome”. Genomics 79 (6): 818–23. DOI:10.1006/geno.2002.6776. PMID 12036296.
- ↑ Nowotny M, Gaidamakov SA, Ghirlando R, Cerritelli SM, Crouch RJ, Yang W (October 2007). „Structure of human RNase H1 complexed with an RNA/DNA hybrid: insight into HIV reverse transcription”. Mol. Cell 28 (2): 264–76. DOI:10.1016/j.molcel.2007.08.015. PMID 17964265.
Literatura
uredi- Nowotny M, Cerritelli SM, Ghirlando R, et al. (2008). „Specific recognition of RNA/DNA hybrid and enhancement of human RNase H1 activity by HBD.”. EMBO J. 27 (7): 1172–81. DOI:10.1038/emboj.2008.44. PMC 2323259. PMID 18337749.
- Lima WF, Wu H, Nichols JG, et al. (2003). „Human RNase H1 uses one tryptophan and two lysines to position the enzyme at the 3'-DNA/5'-RNA terminus of the heteroduplex substrate.”. J. Biol. Chem. 278 (50): 49860–7. DOI:10.1074/jbc.M306543200. PMID 14506260.
- Lima WF, Rose JB, Nichols JG, et al. (2007). „The positional influence of the helical geometry of the heteroduplex substrate on human RNase H1 catalysis.”. Mol. Pharmacol. 71 (1): 73–82. DOI:10.1124/mol.106.025429. PMID 17028157.
- Lima WF, Nichols JG, Wu H, et al. (2004). „Structural requirements at the catalytic site of the heteroduplex substrate for human RNase H1 catalysis.”. J. Biol. Chem. 279 (35): 36317–26. DOI:10.1074/jbc.M405035200. PMID 15205459.
- Otsuki T, Ota T, Nishikawa T, et al. (2005). „Signal sequence and keyword trap in silico for selection of full-length human cDNAs encoding secretion or membrane proteins from oligo-capped cDNA libraries.”. DNA Res. 12 (2): 117–26. DOI:10.1093/dnares/12.2.117. PMID 16303743.
- Wu H, Lima WF, Crooke ST (1999). „Properties of cloned and expressed human RNase H1.”. J. Biol. Chem. 274 (40): 28270–8. DOI:10.1074/jbc.274.40.28270. PMID 10497183.
- Frank P, Braunshofer-Reiter C, Pöltl A, Holzmann K (1998). „Cloning, subcellular localization and functional expression of human RNase HII.”. Biol. Chem. 379 (12): 1407–12. DOI:10.1515/bchm.1998.379.12.1407. PMID 9894807.
- Wu H, Lima WF, Zhang H, et al. (2004). „Determination of the role of the human RNase H1 in the pharmacology of DNA-like antisense drugs.”. J. Biol. Chem. 279 (17): 17181–9. DOI:10.1074/jbc.M311683200. PMID 14960586.
- Hillier LW, Graves TA, Fulton RS, et al. (2005). „Generation and annotation of the DNA sequences of human chromosomes 2 and 4.”. Nature 434 (7034): 724–31. DOI:10.1038/nature03466. PMID 15815621.
- Lima WF, Wu H, Nichols JG, et al. (2003). „Human RNase H1 activity is regulated by a unique redox switch formed between adjacent cysteines.”. J. Biol. Chem. 278 (17): 14906–12. DOI:10.1074/jbc.M211279200. PMID 12473655.
- ten Asbroek AL, van Groenigen M, Nooij M, Baas F (2002). „The involvement of human ribonucleases H1 and H2 in the variation of response of cells to antisense phosphorothioate oligonucleotides.”. Eur. J. Biochem. 269 (2): 583–92. DOI:10.1046/j.0014-2956.2001.02686.x. PMID 11856317.
- Gerhard DS, Wagner L, Feingold EA, et al. (2004). „The status, quality, and expansion of the NIH full-length cDNA project: the Mammalian Gene Collection (MGC).”. Genome Res. 14 (10B): 2121–7. DOI:10.1101/gr.2596504. PMC 528928. PMID 15489334.
- Ota T, Suzuki Y, Nishikawa T, et al. (2004). „Complete sequencing and characterization of 21,243 full-length human cDNAs.”. Nat. Genet. 36 (1): 40–5. DOI:10.1038/ng1285. PMID 14702039.
- Cerritelli SM, Crouch RJ (1998). „Cloning, expression, and mapping of ribonucleases H of human and mouse related to bacterial RNase HI.”. Genomics 53 (3): 300–7. DOI:10.1006/geno.1998.5497. PMID 9799596.
- Strausberg RL, Feingold EA, Grouse LH, et al. (2002). „Generation and initial analysis of more than 15,000 full-length human and mouse cDNA sequences.”. Proc. Natl. Acad. Sci. U.S.A. 99 (26): 16899–903. DOI:10.1073/pnas.242603899. PMC 139241. PMID 12477932.
- Cerritelli SM, Frolova EG, Feng C, et al. (2003). „Failure to produce mitochondrial DNA results in embryonic lethality in Rnaseh1 null mice.”. Mol. Cell 11 (3): 807–15. DOI:10.1016/S1097-2765(03)00088-1. PMID 12667461.
- Lima WF, Rose JB, Nichols JG, et al. (2007). „Human RNase H1 discriminates between subtle variations in the structure of the heteroduplex substrate.”. Mol. Pharmacol. 71 (1): 83–91. DOI:10.1124/mol.106.025015. PMID 17028158.