RNK helikaza
(Preusmjereno sa stranice RNA helicase)
RNK helikaza (EC 3.6.4.13, CSFV NS3 helikaza, DBP2, DbpA, DDX17, DDX25, DDX3, DDX3X, DDX3Y, DDX4, DDX5, DEAD-box protein DED1, DEAD-kutija RNK helikaza, DEAH-kutija protein 2, DEAH-kutija RNK helikaza, DED1, Dex(H/D) RNK helikaza, EhDEAD1, EhDEAD1 RNK helikaza, eIF4A helikaza, KOKV helikaza, Mtr4p, nestrukturni protein 3 helikaza, NPH-II, RHA, RNK helikaza A, RNK helikaza DDX3, RNK helikaza Hera, RNK-zavisna ATPaza, TGBp1 NTPaza/helikaza domen, VRH1, GRTH/DDX25) je enzim sa sistematskim imenom ATP fosfohidrolaza (odvijanje RNK heliksa).[1][2][3][4][5][6][7][8] Ovaj enzim katalizuje sledeću hemijsku reakciju
RNK helikaza | |||||||||
---|---|---|---|---|---|---|---|---|---|
Dimer RNK helikaze (virus hepatitisa C) | |||||||||
Identifikatori | |||||||||
EC broj | 3.6.4.13 | ||||||||
IntEnz | IntEnz view | ||||||||
BRENDA | BRENDA entry | ||||||||
ExPASy | NiceZyme view | ||||||||
KEGG | KEGG entry | ||||||||
MetaCyc | metabolic pathway | ||||||||
PRIAM | profile | ||||||||
PDB | RCSB PDB PDBe PDBj PDBsum | ||||||||
|
RNK helikaze koriste energiju ATP hidrolize za odvijanje RNK molekula.
Reference
uredi- ↑ Cordin, O., Tanner, N.K., Doere, M., Linder, P. and Banroques, J. (2004). „The newly discovered Q motif of DEAD-box RNA helicases regulates RNA-binding and helicase activity”. EMBO J. 23: 2478-2487. PMID 15201868.
- ↑ Rodamilans, B. and Montoya, G. (2007). „Expression, purification, crystallization and preliminary X-ray diffraction analysis of the DDX3 RNA helicase domain”. Acta Crystallogr. Sect. F Struct. Biol. Cryst. Commun. 63: 283-286. PMID 17401195.
- ↑ Lee, C.G. and Hurwitz, J. (1992). „A new RNA helicase isolated from HeLa cells that catalytically translocates in the 3′ to 5′ direction”. J. Biol. Chem. 267: 4398-4407. PMID 1537828.
- ↑ Li, S.C., Chung, M.C. and Chen, C.S. (2001). „Cloning and characterization of a DEAD box RNA helicase from the viable seedlings of aged mung bean”. Plant Mol. Biol. 47: 761-770. PMID 11785937.
- ↑ Wu, J., Bera, A.K., Kuhn, R.J. and Smith, J.L. (2005). „Structure of the Flavivirus helicase: implications for catalytic activity, protein interactions, and proteolytic processing”. J. Virol. 79: 10268-10277. PMID 16051820.
- ↑ Gross, C.H. and Shuman, S. (1998). „The nucleoside triphosphatase and helicase activities of vaccinia virus NPH-II are essential for virus replication”. J. Virol. 72: 4729-4736. PMID 9573237.
- ↑ Frick, D.N. (2007). „The hepatitis C virus NS3 protein: a model RNA helicase and potential drug target”. Curr. Issues Mol. Biol. 9: 1-20. PMID 17263143.
- ↑ Ivanov, K.A. and Ziebuhr, J. (2004). „Human coronavirus 229E nonstructural protein 13: characterization of duplex-unwinding, nucleoside triphosphatase, and RNA 5′-triphosphatase activities”. J. Virol. 78: 7833-7838. PMID 15220459.
Literatura
uredi- Nicholas C. Price, Lewis Stevens (1999). Fundamentals of Enzymology: The Cell and Molecular Biology of Catalytic Proteins (Third izd.). USA: Oxford University Press. ISBN 019850229X.
- Eric J. Toone (2006). Advances in Enzymology and Related Areas of Molecular Biology, Protein Evolution (Volume 75 izd.). Wiley-Interscience. ISBN 0471205036.
- Branden C, Tooze J.. Introduction to Protein Structure. New York, NY: Garland Publishing. ISBN: 0-8153-2305-0.
- Irwin H. Segel. Enzyme Kinetics: Behavior and Analysis of Rapid Equilibrium and Steady-State Enzyme Systems (Book 44 izd.). Wiley Classics Library. ISBN 0471303097.
- Robert A. Copeland (2013). Evaluation of Enzyme Inhibitors in Drug Discovery: A Guide for Medicinal Chemists and Pharmacologists (2nd izd.). Wiley-Interscience. ISBN 111848813X.
- Gerhard Michal, Dietmar Schomburg (2012). Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (2nd izd.). Wiley. ISBN 0470146842.