U matematici, zakrivljenost se odnosi brojne u maloj meri povezane koncepte iz različitih oblasti geometrije. Intuitivno, zakrivljenost je mera odstupanja geometrijskog objekta od ravni, ili prave u slučaju linije, ali se to definiše na različite načine u zavisnosti od konteksta.

Prikaz zakrivljenosti prostor-vremena.

Svaka neprekidna kriva može se aproksimirati krugom određenog poluprečnika u okolini date tačke. Pretpostavimo da je kriva data u ravni. Poluprečnik kruga koji je dodiruje u tački (x, y) i ima isti prvi i drugi izvod kao i data kriva u toj tački predstavlja zakrivljenost krive. Krenimo od jednačine kruga sa centrom u tački (p, q)

, (1)

gde je r poluprečnik kruga.

Diferenciranjem ove jednačine dobijamo

, (2)

a još jednim diferenciranjem

. (3)

Iz (3) dobijamo da je

, (4)

a vraćanjem ovog rezultata u (2) sledi

, (5).

Uvrštavanjem (4) i (5) u (1), dobijamo da je poluprečnik (krivine) kruga dat sa:

, (6)

uz napomenu da je r uvek pozitivan.

Za sve tačke na krugu, pa tako i tačke dela krive koju krug aproksimira (dodirna tačka i beskonačno mala okolina) veza poluprečnika kruga (zakrivljenosti) i prvog i drugog izvoda krive u toj tački data je jednačinom (6).

Ukoliko pomerimo koordinatni početak u dodirnu tačku kruga i krive i još postavimo x osu da se poklopi sa tangentom krive u toj tački, prvi izvod postaje nula i jednačina poluprečnika krivine (zakrivljenosti krive) se svodi na:

.

Iz jednačina (4) i (5) mogu se za svaku tačku krive odrediti koordinate centra kruga zakrivljenosti p i q. Te tačke definišu novu krivu koja se naziva centroida.

Literatura

uredi

Spoljašnje veze

uredi