Trilostan je organsko jedinjenje, koje sadrži 20 atoma ugljenika i ima molekulsku masu od 329,433 Da.[5][6][7]

Trilostan
Klinički podaci
Robne marke Desopan, Modrastane, Modrenal
AHFS/Drugs.com Monografija
Identifikatori
CAS broj 13647-35-3
ATC kod H02CA01
PubChem[1][2] 656583
DrugBank DB01108
ChemSpider[3] 570949
ChEBI CHEBI:32260 DaY
ChEMBL[4] CHEMBL1200907 DaY
Hemijski podaci
Formula C20H27NO3 
Mol. masa 329,433
SMILES eMolekuli & PubHem
Fizički podaci
Tačka topljenja 264 °C (507 °F)
Farmakokinetički podaci
Poluvreme eliminacije 8 h
Farmakoinformacioni podaci
Trudnoća ?
Pravni status

Osobine uredi

Osobina Vrednost
Broj akceptora vodonika 4
Broj donora vodonika 2
Broj rotacionih veza 0
Particioni koeficijent[8] (ALogP) 2,4
Rastvorljivost[9] (logS, log(mol/L)) -4,0
Polarna površina[10] (PSA, Å2) 76,8

Reference uredi

  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.  edit
  2. Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1. 
  3. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  4. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. (2012). „ChEMBL: a large-scale bioactivity database for drug discovery”. Nucleic Acids Res 40 (Database issue): D1100-7. DOI:10.1093/nar/gkr777. PMID 21948594.  edit
  5. Komanicky P, Spark RF, Melby JC: Treatment of Cushing's syndrome with trilostane (WIN 24,540), an inhibitor of adrenal steroid biosynthesis. J Clin Endocrinol Metab. 1978 Nov;47(5):1042-51. PMID 233687
  6. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011). „DrugBank 3.0: a comprehensive resource for omics research on drugs”. Nucleic Acids Res. 39 (Database issue): D1035-41. DOI:10.1093/nar/gkq1126. PMC 3013709. PMID 21059682.  edit
  7. David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali (2008). „DrugBank: a knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Res 36 (Database issue): D901-6. DOI:10.1093/nar/gkm958. PMC 2238889. PMID 18048412.  edit
  8. Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o. 
  9. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573.  edit
  10. Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286.  edit

Literatura uredi

Spoljašnje veze uredi