Prvi Keplerov zakon – razlika između verzija

Uklonjeni sadržaj Dodani sadržaj
Kolega2357 (razgovor | doprinos)
m robot kozmetičke promjene
dopuna
Red 2:
{| {{prettytable}}
|-
| Planeti se oko [[Sunce|Sunca]] kreću po [[elipsa|eliptičnim]] putanjama; u zajedničkom [[žarište|žarištu]] tih elipsa nalazi se sunceSunce.
|}
 
[[Datoteka:Kepler's Laws Slika 01.jpg|mini|desno|400px500px|[[Geometrija]] planetarnog kretanja: planet (<math>M</math>) obilazi oko [[Sunce|Sunca]] (<math>S</math>) po elipsi (<math>P</math>-[[perihel]], <math>A</math>-[[afel]])]]
 
Na prikazanoj slici elipsa predstavlja putanju nekog planeta. '''Linearni [[ekscentricitet]]''' je:
Red 21:
gdje se <math>p</math> naziva '''parametrom elipse'''.
 
Po definiciji elipse, <math>r+r_1=2a</math>. Iz trokuta <math>S'SM</math>, primjenom [[kosinusovkosinusni poučak|kosinusovakosinusnog poučka]] i supstitucijom parametra elipse, slijedi da je:
 
<center><math>r=\frac{p}{1+\varepsilon\cos v}</math></center>
 
i to bi bila jednadžba planetske putanje ([[elipsa|jednadžba elipse]]), odnosno matematski izraz prvoga Keplerova zakona. Iz te se jednadžbe vidi ovisnost udaljenosti planeta od Sunca o kutu <math>v</math> koji se naziva [[prava anomalija|pravom anomalijom]] planeta.
 
Kad je <math>v=\frac{\pi}{2}</math>, tada je <math>r=p</math>, pa iz toga proizlazi definicija parametra planetske putanje kao radijus-vektora planeta koji je okomit na glavnu os elipse.
Red 36:
<center><math>P=a(1-\varepsilon)</math></center>
 
== Geometrija elipse kod prvog Keplerovog zakona ==
== Vidjeti također ==
[[Datoteka:Ellipse latus rectum.PNG|mini|desno|400px|Figure 4: Heliocentrički koordinatni sustav ''(r, θ)'' za [[elipsa|elipsu]]. Prikazani su: velika poluos ''a'', mala poluos ''b'' i parametar elipse ''p''; centar elipse i dva žarišta označena velikim točkama. Kada je θ = 0°, ''r = r<sub>min</sub>'' i kada je θ = 180°, ''r = r<sub>max</sub>''.]]
* [[Johannes Kepler]]
Kada je ''θ'' = 0°, ili [[perihel]] (točka u kojoj je planet najbliži Suncu) vrijedi:
* [[Keplerovi zakoni]]
:<math>r_\mathrm{min}=\frac{p}{1+\varepsilon}.</math>
* [[Drugi Keplerov zakon]]
* [[Treći Keplerov zakon]]
 
Kada je ''θ'' = 90° ili ''θ'' = 270°, udaljenost između Sunca i planeta je jednaka maloj poluosi elipse ''b''.
[[Kategorija:Nebeska mehanika]]
 
Kada je ''θ'' = 180°, ili [[afel]] (točka u kojoj je planet najudaljeniji od Sunca) vrijedi:
[[en:Kepler's laws of planetary motion#First Law]]
:<math>r_\mathrm{max}=\frac{p}{1-\varepsilon}.</math>
 
Između velike poluosi ''a'', perihela ''r''<sub>min</sub> i afela ''r''<sub>max</sub> vrijedi:
:<math>\,r_\max - a=a-r_\min</math>
:<math>a=\frac{p}{1-\varepsilon^2}.</math>
 
Između male poluosi ''b'', perihela ''r''<sub>min</sub> i afela ''r''<sub>max</sub> vrijedi:
:<math>\frac{r_\max} b =\frac b{r_\min}</math>
 
:<math>b=\frac p{\sqrt{1-\varepsilon^2}}.</math>
 
Između parametra elipse ''p'', perihela ''r''<sub>min</sub> i afela ''r''<sub>max</sub> vrijedi:
:<math>\frac{1}{r_\min}-\frac{1}{p}=\frac{1}{p}-\frac{1}{r_\max}</math>
 
:<math>pa=r_\max r_\min=b^2\,.</math>
 
Između numeričkog ekscentriciteta ''&epsilon;'', perihela ''r''<sub>min</sub> i afela ''r''<sub>max</sub> vrijedi:
:<math>\varepsilon=\frac{r_\mathrm{max}-r_\mathrm{min}}{r_\mathrm{max}+r_\mathrm{min}}.</math>
 
[[Površina]] elipse je:
:<math>A=\pi a b\,.</math>
 
Poseban slučaj elipse je [[kružnica]] kada je ''ε'' = 0, što daje ''r'' = ''p'' = ''r''<sub>min</sub> = ''r''<sub>max</sub> = ''a'' = ''b'' i ''A'' = π ''r''<sup>2</sup>.
 
=== Svojstva elipse ===
[[Datoteka:Elipse.png|mini|400px|desno|[[Elipsa]]: ''a'' = velika poluos, ''b'' = mala poluos i ''e'' = linearni [[ekscentricitet]]. Svaki [[planet]] ima svoju elipsu po kojoj se giba. Te elipse imaju zajedničko [[žarište]].]]
[[Kružnica]] ima jednu važnu točku, središte. [[Elipsa]] ima takve dvije točke, koje se zovu [[žarište|žarišta]]. Na slici su žarišta označena slovima F<sub>1</sub> i F[[2]]. Označimo li na [[Krivulja|krivulji]] koju god točku, recimo X, i spojimo je sa žarištima. Ako zbrojimo ove dvije dužine, označene slovima r<sub>1</sub> i r<sub>2</sub> dobit ćete dužinu AB, koja se zove '''velika os elipse'''. Točke A i B zovu se '''tjemena'''. U polovištu velike osi je središte. Polovina velike osi zove se poluos elipse i bilježi se obično slovom ''a''. Udaljenost središta od žarišta, podijelimo s polovinom velike osi AS i dobivamo broj koji se zove ekscentricitet elipse ''e''. Ako je elipsa vrlo slična kružnici, kao što je to slučaj kod staze planeta, onda su žarišta F<sub>1</sub> i F<sub>2</sub> blizu jedno drugome i ekscentricitet je vrlo malen. Zamislimo sada da se Sunce nalazi u žarištu F<sub>1</sub>, a planet se giba po elipsi. Njegova udaljenost od Sunca neprestano mijenja. Kad je u tjemenu A, onda je najbliži Suncu, zato se ta točka u stazi planeta zove [[perihel]] ([[Starogrčki jezik|grč.]] ''peri'': blizina, ''helios'': Sunce). Dok putuje od perihela do točke B sve se više udaljuje od Sunca. Najveća je udaljenost F<sub>1</sub>B. Kad planet stigne u točku B, onda je najdalje od Sunca, zato se točka B zove [[afel]] (riječ složena od ''apo'': od i ''helios'': Sunce). Planet se nije zaustavio u afelu nego nastavlja svoje gibanje po elipsi prema perihelu. Time se opet približava Suncu. <ref> Seminar – Životopisi matematičarki i matematičara: "Johannes Kepler", Sveučilište u Zagrebu, PMF - Matematički odjel, Studenti: Matija Mandarić, Božana Odorčić, Krunoslav Rajčić, web.studenti.math.pmf.unizg.hr, 2014.</ref>
 
U vrijeme [[Johannes Kepler|Johannesa Keplera]] nije bilo još poznato koliko je [[Zemlja]] udaljena od [[Sunce|Sunca]], pa se nisu znale ni ostale udaljenosti u [[svemir]]u. Ipak se moglo prema starijim teorijama, a onda i prema novijim opažanjima, dosta točno ustanoviti koliko puta je neki planet bliže ili dalje od Sunca, nego li Zemlja. Čim je planet bliži Suncu, tim je kraće vrijeme njegova obilaska . Osim toga, retrogradno gibanje pokazuje kako velikom se vidi staza Zemlje gledana s tog planeta. Na toj osnovi su [[astronom]]i već u staro doba dosta dobro mogli odrediti i udaljenosti planeta od Sunca uzevši udaljenost Zemlje kao jedinicu. Tablica ispod pokazuje [[Nikola Kopernik|Kopernikove]] i današnje rezultate (osnova je udaljenost Zemlje od Sunca a<sub>Z</sub> ili [[astronomska jedinica]]): <ref> Vladis Vujnović : "Astronomija", Školska knjiga, 1989. </ref>
 
{| class="wikitable"
|- bgcolor="#efefef"
!Qu|Odnos ''a/a<sub>Z</sub>''||Kopernik||Danas
|-align = "center"
|[[Merkur]]||0.376||0.387
|-align = "center"
|[[Venera]]||0.7196||0.723
|-align = "center"
|[[Mars]]||1.52||1.524
|-align = "center"
|[[Jupiter]]||5.217||5.203
|-align = "center"
|[[Saturn]]||9.184||9.54
|}
 
== Prvi Keplerov zakon i planetarne putanje ==
[[Datoteka:OrbitalEccentricityDemo.svg|mini|300px|desno| Sa smanjenjenjem ekscentriciteta (''ε'' → 0) [[elipsa]] prelazi u [[kružnica|kružnicu]], a njezina velika poluos prelazi u polumjer kružnice. Ulogu srednje udaljenosti ima tada, naravno, sam polumjer kružnice. S druge strane, s povećanjem ekscentriciteta (''ε'' → 1) elipsa prelazi u [[parabola|parabolu]]. Za [[hiperbola|hiperbolu]] vrijedi ''ε'' > 1.]]
[[Datoteka:Inclination_in_Elliptical_Orbit.png|mini|desno|300px|[[Inklinacija]] je [[kut]] između neke zadane ravnine i referentne ravnine (najčešće [[ekliptika]] ili [[nebeski ekvator]] matičnog tijela) i izražava se u [[stupanj (kut)|stupnjevima]] (°).]]
[[Datoteka:Pluto Orbit.gif|mini|300px|desno|[[Pluton]]ova putanja i [[ekliptika]].]]
[[Datoteka:Plutoorbit1.5sideview.gif|mini|300px|desno|Plutonova putanja u ravnini ekliptike. Ravnine putanja [[Neptun]]a i Plutona sijeku pod kutom od kojih 15°.]]
Prvi Keplerov zakon ustanovljuje geometrijske osobine [[planetarna putanja|planetarnih putanja]]. Kepler je našao da su staze elipse, a da se [[Sunce]] nalazi u jednom od [[žarište|žarišta]]. Kako je Sunce zajedničko svim planetima, tako je Sunce u žarištu koje je zajedničko svim eliptičnim stazama. To je jedini uvjet i nema daljih ograničenja, pa položaj putanje u prostoru može biti veoma raznolik. Na skicama koje prikazuju dvije ili više planetarnih putanja, one se nalaze u istoj ravnini. Općenito, velike poluosi dviju elipsi ne podudaraju se ni po smjeru, ni po veličini, ni po ravninama u kojima se nalaze.
 
Veličina i izduženost elipse određena je velikom poluosi ''a'' i ekscentricitetom ''e''. Velika poluos ''a'' ujedno je i srednja udaljenost točke na elipsi od jednog žarišta (planeta od Sunca). Kada je tijelo najdalje od Sunca u [[afel]]u, njegova je provodnica (radijus - vektor) najveća:
 
:<math>\,r_\max=a+e</math>
 
Kada je planet Suncu najbliže (kada je u [[perihel]]u), tada mu je provodnica najmanja:
 
:<math>\,r_\min=a-e</math>
 
Aritmetička sredina tih udaljenosti ili srednja udaljenost jednaka je velikoj poluosi ''a'':
 
:<math>a=\frac{r_\mathrm{max}+r_\mathrm{min}}{2}.</math>
 
Izduženost putanje iskazuje se numeričkim ekscentricitetom ''ε'' koji je jednak:
 
:<math>\varepsilon=\frac{e}{a}=\frac{\sqrt{a^2-b^2}}{a}</math>
 
''ε'' je bezdimenzionalna veličina. Sa smanjenjenjem ekscentriciteta (''ε'' → 0) elipsa prelazi u kružnicu, a njezina velika poluos prelazi u polumjer kružnice. Ulogu srednje udaljenosti ima tada, naravno, sam polumjer kružnice. S druge strane, s povećanjem ekscentriciteta (''ε'' → 1) elipsa prelazi u [[parabola|parabolu]]. Za [[hiperbola|hiperbolu]] vrijedi ''ε'' > 1. Parabola i hiperbola nisu zatvorene krivulje.
 
=== Veličine planetarnih putanja ===
Položaj planetarne putanje u prostoru treba odrediti pomoću poznatih [[orijentacija|orijentira]]. Zato se upotrebljava ravnina [[ekliptika|ekliptike]] i [[proljetna točka]]. Kut između ravnine u kojoj se nalazi staza tijela i ravnine ekliptike zove se nagib ili [[inklinacija]] (oznaka: ''i''). Dvije se ravnine sijeku u pravcu na kojemu su dvije točke istaknute - one u kojima planetarna putanja probada ravninu ekliptike: '''uzlazni čvor''' ''Ω'' (u njemu tijelo u svom godišnjem gibanju prelazi sa južne strane ekliptike na sjevernu) i '''silazni čvor''' ''Ʊ'' (u njemu tijelo u svom godišnjem gibanju prelazi sa sjeverne strane ekliptike na južnu). Položaj uzlaznog čvora zadaje se ekliptičkom dužinom uzlaznog čvora ''Ω''. S mjerama ''i'' i ''Ω'' orijentirana je ravnina gibanja [[nebesko tijelo|nebeskog tijela]] u prostoru. Da bi se pak u toj ravnini orijentirala elipsa, bilježi se položaj njezina perihela. U tu svrhu služi '''argument perihela''' ''π'', kut od uzlaznog čvora do velike poluosi koja sadrži perihel. '''Longitudom perihela''' naziva se ukupan [[kut]] ''ω = Ω + π''.
 
Da bi se pratilo gibanje nebeskog tijela, potrebno je dodati podatak o [[zvjezdana godina|zvjezdanom (sideričkom)]] [[Ophodno vrijeme|ophodnom vremenu]] ''P'' i o trenutku ''t<sub>o</sub>'' u kojemu tijelo prolazi perihelom. Dakle, za opis geometrijskih svojstava planetarnih putanja - veličine elipse, oblika elipse, njezine orijentacije i načina gibanja tijela - potrebno je 7 veličina: ''a, e, i, Ω, ω, P'' i ''t<sub>o</sub>''. To su '''veličine planetarnih putanja'''.
 
=== Analiza planetarnih putanja ===
Većina planeta ima slabo izdužene planetarne putanje (staze), koje je na malom crtežu okom teško razlikovati od kružnice. Tako Zemljina putanja s ''ε'' = 0.001673 ima veliku poluos ''a'' = 149.597 ∙ 10<sup>6</sup> [[metar|km]], malu poluos ''b'' = 149.577 ∙ 10<sup>6</sup> km, najmanju udaljenost od Sunca ''r<sub>min</sub>'' = 147.1 ∙ 10<sup>6</sup> km i najveću udaljenost od Sunca ''r<sub>max</sub>'' = 152.1 ∙ 10<sup>6</sup> km.
 
Staze [[planetoid]]a u prosjeku su jače izdužene os planetnih putanja. U [[komet]]a je šarolikost mnogo veća. Neki kometi imaju numerički ekscentricitet ''ε'' blizak jedinici.
 
Razlike se opažaju i u nagibima planetarnih putanja. [[Pluton]]ova i [[Merkur]]ova staza najviše se od svih planeta otklanjaju od Zemljine putanje. Kod Plutona to dovodi do zanimljive posljedice. Naime, crtaju li se staze [[Neptun]]a i Plutona projicirane u istu ravninu, čini se da se zbog izduženosti Plutonove staze te dvije putanje sijeku, te da se dva planeta mogu i sudariti. Neptun je zaista u nekim razdobljima dalje od Sunca nego Pluton (na primjer kao od 1980. do 1999.). No kako se ravnine putanja Neptuna i Plutona sijeku pod kutom od kojih 15°, to su staze uvijek daleko jedna od druge. Stoga se oni nikada ne mogu sudariti.
 
Putanje planetoida nagnute su prema ekliptici za više desetaka stupnjeva, ravnine kometa mogu pak sjeći ekliptiku pod bilo kojim kutom. Kada je kut inklinacije veći od 180°, kaže se da je putanja nebeskog tijela i njegova revolucija '''retrogradna'''; projicirajući takvu stazu na ravninu ekliptike, vidjelo bi se da se tijelo giba oko Sunca u suprotnom smislu od Zemlje i ostalih planeta. Svi planeti i planetoidi imaju direktnu revoluciju. Fizički različite vrste tijela u [[Sunčev sustav|Sunčevu sustavu]] se grupiraju po geometrijskim svojstvima putanja. Do razlika u vladanju nebeskih tijela došlo je u toku razvoja Sunčeva sustava.
 
Općenito, veličine planetarnih putanja pojedinog člana Sunčeva sustava neprestano se mijenjaju. Promjena tih veličina kod Zemlje mogla je u prošlosti, u dugim [[Geološko razdoblje|geološkim razdobljima]], utjecati na [[klimatske promjene]].
 
Zapazimo još da se velika poluos (linija koja povezuje najbliži i najudaljeniji položaj tijela od Sunca, [[perihel]] i [[afel]]), nazvana još i '''linija apsida''', ne podudara s linijom koja povezuje [[Zemljina putanja|zimsku i ljetnu točku]]. Razlika se u stvari stalno povećava, jer se linija apsida zakreće u liniji putanje; zakreće se u smjeru gibanja Zemlje, pa Zemlji treba više vremena da ponovo stigne u perihel, nego što joj treba da ponovi svoj položaj prema zvijezdama. Drugim rječima, [[zvjezdana godina|zvjezdana (siderička) godina]] kraća je od vremena prolaska Zemlje perihelom. To razdoblje traje 365 d 6 h 13 min 53 s = 365.25964 [[dan|d]] i zove se '''anomalistička godina''' ([[godina]]).
 
==Izvori==
{{izvori}}
 
== Poveznice ==
*[[Johannes Kepler]]
*[[Keplerovi zakoni]]
*[[Drugi Keplerov zakon]]
*[[Treći Keplerov zakon]]
 
[[Kategorija: Nebeska mehanika]]