Razlike između izmjena na stranici "Foton"

Dodano 90.685 bajtova ,  prije 5 godina
preuzeto s sr wikipedije
m/м (robot kozmetičke promjene)
(preuzeto s sr wikipedije)
'''Foton''' (od grčke reči ''φωτός'', što znači „svetlost“) je [[elementarna čestica]], [[kvant]] [[elektromagnetsko zračenje|elektromagnetnog zračenja]] (u užem smislu — [[svetlost]]i). To je čestica bez [[masa|mase mirovanja]]. [[Naelektrisanje]] fotona je takođe jednako nuli. Foton može biti samo u dva spinska stanja sa projekcijom [[spin]]a na smer kretanja ±1. Tom svojstvu u [[elektrodinamika|klasičnoj elektrodinamici]] odgovaraju kružna desna i leva [[polarizacija]] [[elektromagnetsko zračenje|elektromagnetnog talasa]]. Fotonu kao elementarnoj čestici je svojstven [[korpuskularno-talasni dualizam]], tj. on istovremeno poseduje svojstva [[elementarna čestica|elementarne čestice]] i [[Talas (fizika)|talasa]]. Niz autora ubraja foton u [[kvazičestica|kvazičestice]] zbog mase mirovanja jednakoj nuli.<ref>{{Cite book
'''Foton''' je [[kvant]] [[elektromagnetni talas|elektromagnetnog zračenja]] i eletromagnetnog međudelovanja.
| author = Статья В. В. Мигулина «Электромагнитные волны»
Prenosilac je [[elektromagnetna sila|elektromagnetne sile]] koja deluje među naeletrisanim [[čestica]]ma. Foton nema [[masa|masu]] mirovanja, ima [[spin]] 1 (jedan) i istovremeno je svoja [[antičestica]]. Zbog celobrojnog spina foton je i [[bozon]].
|title=Большая советская энциклопедия
| volume = 30|pages=67-68
|publisher=М.: Советская энциклопедия
|year=1978}}</ref> Foton nema masu mirovanja, slično kvazičesticama, ali ipak ne traži sredinu za svoje prostiranje, slično elementarnim česticama, u koje većina autora ubraja foton.
Fotoni se obično obeležavaju slovom <math>~\gamma</math>, zbog čega ih često nazivaju [[gama-kvant]]ima (fotoni visokih [[energija]]) pri čemu su ti termini praktično [[sinonim]]i. Sa tačke gledišta [[Standardni model|Standardnog modela]] foton je [[bozoni|bozon]]. [[Virtuelna čestica|Virtuelni]] fotoni<ref>{{cite journal
| author = Д. В. Ширков
| title = Виртуальные частицы
| url = http://www.femto.com.ua/articles/part_1/0507.html
| author = Гл. ред. [[Александр Прохоров|Прохоров]]
| publisher = [[Физическая энциклопедия]]
| location = М.
| publisher = [[Большая российская энциклопедия (издательство)|Советская энциклопедия]]
| year = 1988
| volume = 1}}</ref> su prenosioci [[elektromagnetska sila|elektromagnetne interakcije]] koji na taj način obezbeđuju mogućnost uzajamnog delovanja između dva naelektrisanja.<ref>{{cite web
| url = http://www.femto.com.ua/articles/part_2/4664.html
| title = Электромагнитное взаимодействие
| publisher = ФЭ
| accessdate = 20. 7. 2009.
}}</ref>
 
== Istorija ==
Foton se u vakuumu kreće brzinom svetlosti ''c''. Energija fotona izražava se [[Plankova formula|Plankovom formulom]]
Savremena teorija svetlosti zasniva se na radovima mnogih naučnika. Kvantni karakter zračenja elektromagnetnog polja bio je postuliran [[Maks Plank|Plankom]] [[1900]]. godine sa ciljem objedinjenja svojstava [[toplotno zračenje|toplotnog zračenja]].<ref>{{Cite book
|author = А. А. Детлаф, Б. М. Яворский
|title = Курс физики
|number = 5-е изд
|location = М.
|publisher = ACADEMA
|year = 2005|pages = 485-487|isbn=978-5-7695-2312-0}}</ref>
Termin „foton“ uveo je hemičar [[Gilbert Njuton Luis|Gilbert Njutn Luis]] [[1926]]. godine<ref name="physicaldictionary">{{Cite book
|author = Статья Э. А. Тагирова
|title=Физический энциклопедический словарь
|publisher=М.: Советская энциклопедия
|year=1984|pages=826-}}</ref>.
U godinama između [[1905]]. i [[1917]]. [[Albert Ajnštajn]] je objavio <ref name="Einstein1905">{{cite journal
|last = [[Albert Ajnštajn|Einstein A.]]
|year=1905
|title=Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt (trans. A Heuristic Model of the Creation and Transformation of Light)
|journal = Annalen der Physik
|volume = 17|pages=132—148}} {{de}}. An [[s:A Heuristic Model of the Creation and Transformation of Light|English translation]] is available from [[Vikizvornik|Wikisource]].</ref><ref name="Einstein1909">{{cite journal
|last = [[Albert Ajnštajn|Einstein A.]]
|year=1909
|title=Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung (trans. The Development of Our Views on the Composition and Essence of Radiation)
|journal = Physikalische Zeitschrift
|volume = 10|pages=817—825}} {{de}}. An [[s:The Development of Our Views on the Composition and Essence of Radiation|English translation]] is available from Wikisource.</ref><ref name="Einstein1916a">{{cite journal
|last = [[Albert Ajnštajn|Einstein A.]]
|year=1916
|title=Strahlungs-emission und -absorption nach der Quantentheorie
|journal = Verhandlungen der Deutschen Physikalischen Gesellschaft
|volume = 18|pages=318}} {{de}}</ref><ref name="Einstein1916b">{{cite journal
|last = [[Albert Ajnštajn|Einstein A.]]
|year=1916
|title=Zur Quantentheorie der Strahlung
|journal = Mitteilungen der Physikalischen Geselschaft zu Zürich
|volume = 16|pages=47}} Takođe ''Physikalische Zeitschrift'', '''18''', 121—128 (1917). {{de}}</ref>
niz radova posvećenih protivurečnosti rezultata eksperimenata i klasične [[Maksvelove jednačine|talasne teorije svetlosti]], [[fotoelektrični efekat|fotoefektu]] i sposobnosti [[hemijska supstanca|supstance]] da bude u [[toplotna ravnoteža|toplotnoj ravnoteži]] sa elektromagnetnim zračenjem.
 
Postojali su pokušaji da se objasni kvantna priroda svetlosti poluklasičnim modelima, u kojima je svetlost i dalje opisivana [[Maksvelove jednačine|Maksvelovim jednačinama]], bez uzimanja u obzir kvantovanja, a objektima koji emituju i apsorbuju (upijaju) svetlost pripisana su kvantna svojstva. Bez obzira što su poluklasični modeli uticali na razvoj [[kvantna mehanika|kvantne mehanike]] (što dokazuje to da neka njihova tvrđenja i posledice istih i dalje mogu naći u savremenoj kvantnoj teoriji<ref>{{Cite book
:<math>E=h\nu\,</math>
|author = Редкин Ю. Н.
|title = Часть 5. Физика атома, твердого тела и атомного ядра
|title = Курс общей физики
|location = Киров
|publisher=ВятГГУ
|year = 2006|pages = 24|pages = 152
}}</ref>), eksperimenti su potvrdili tvrđenja Ajnštajna o kvantnoj prirodi svetlosti (pogledati [[fotoelektrični efekat|fotoefekat]]). Treba primetiti da je kvantovanje svojstveno ne samo [[elektromagnetsko zračenje|elektromagnetnim talasima]], već svim oblicima [[kretanje|kretanja]], pritom ne samo talasnim.
 
Uvođenje pojma fotona je doprinelo stvaranju novih teorija i fizičkih instrumenata, a takođe je pogodovalo razvoju eksperimentalne i teorijske osnove kvantne mehanike. Na primer, otkriven je [[laser]], [[Boze-Ajnštajnov kondenzat]], formulisana [[kvantna teorija polja]] i data [[statistika|statistička]] interpretacija kvantne mehanike. U savremenom [[Standardni model|Standardnom modelu]] [[fizika elementarnih častica|fizike elementarnih čestica]] postojanje fotona je posledica toga da su zakoni fizike invarijantni u odnosu na lokalnu [[simetrija(fizika)|simetriju]] u bilo kojoj tački [[Prosor-vreme|prostor-vremena]] (pogledati detaljnije objašnjenje u odeljku [[Foton#Foton kao bozon|Foton kao bozon]]). Ovom simetrijom su određena unutrašnja svojstva fotona kao što su [[naelektrisanje]], [[masa]] i [[spin]].
gde je h [[Planckova konstanta|Plankova konstanta]] a ν fotonu pridružena frekvencija.
 
Među nastavcima koncepcije fotona ističe se [[fotohemija]], [[videotehnika]], [[kompjuterizovana tomografija]] i merenje međumolekulskih rastojanja. Fotoni se takođe koriste kao elementi [[kvantni računar|kvantnih kompjutera]] i specijalnih pribora za prenos podataka (pogledati [[kvantna kriptografija|kvantna kriptografija]]).
<!--NIje čak ni pogrešno: Energija fotona može se prikazati i u drugom obliku, koji je matematički korektan
:<math>E=h/T \,</math>,gdje je T perioda fotona,
 
=== Istorija naziva i obeležavanja ===
a čini se da daje uvid u prirodu fotona i Plankove konstante: Plankova konstanta mogla bi biti energija fotona koji ima periodu od T = 1 s ("standardni foton"), a (pojedinačni) foton bi mogao biti (pojedinačni) elektromagnetski val, čija je perioda obrnutoproporcionalna energiji.-->
Foton je prvobitno od strane [[Albert Ajnštajn|Alberta Ajnštajna]] nazvan „svetlosnim kvantom“.<ref name="Einstein1905" /> Savremen naziv, koji je foton dobio na osnovu [[Grčki jezik|grčke]] reči {{polytonic|φῶς}} phōs (bio je uveden [[1926]]. godine na inicijativu hemičara [[Gilbert Njuton Luis|Gilberta Luisa]], koji je objavio teoriju<ref name="Lewis1926">{{cite journal
| last = Lewis
| first = G. N.
|title=The conservation of photons
| journal = [[Nature (časopis)|Nature]]
|year=1926
| volume = 118|pages=874-875}} {{en}}</ref>
u kojoj je fotone predstavio kao nešto što se ne može ni stvoriti ni uništiti. Luisova teorija nije bila dokazana i bila je u protivurečnosti sa eksperimentalnim podacima, dok je taj naziv za kvante elektromagnetnog zračenja postao uobičajan među fizičarima.
 
U [[fizika|fizici]] foton se obično obeležava simbolom <math>~\gamma</math> (po [[grčko pismo|grčkom]] slovu „gama“). To potiče od oznake za [[gama zračenje]] koje je otkiveno [[1900]]. godine i koje se sastojalo iz fotona visoke energije. Zasluga za otkriće [[gama zračenje|gama zračenja]], jednog od tri vida ([[alfa-raspad|α-]], [[beta-raspad|β-]] i γ-zraci) jonizujuće radijacije, koje su zračili tada poznati [[hemijski element|radioaktivni elementi]], pripada [[Pol Vilard|Polu Vilardu]], dok su elektromagnetnu prirodu gama-zraka otkrili [[1914]]. godine [[Ernest Raderford]] i [[Edvard Andrejd]]. U [[hemija|hemiji]] i [[optičko inženjerstvo|optičkom inženjerstvu]] za fotone se često koristi oznaka <math>~h \nu,</math> gde je <math>~h</math> — [[Plankova konstanta]] i <math>~\nu</math> ([[grčko pismo|grčko]] slovo „ni“ koje odgovara [[frekvencija|frekvenciji]] fotona). Proizvod ove dve veličine je [[energija]] fotona.
== Literatura ==
 
S. Macura, J. Radić-Perić, ATOMISTIKA, Službeni list, Beograd, 2004. str. 231.
=== Istorija razvitka koncepcije fotona ===
{{Commonscat|Photon}}
{{Poseban članak|Svetlost}}
 
[[Datoteka:Young Diffraction.png|mini|left|200px|[[Eksperiment]] [[Tomas Jang|Tomasa Janga]] u vezi sa [[interferencija|interferencijom]] svetlosti na dva otvora ([[1805]]. godine) je pokazao da se svetlost može posmatrati kao talas. Na taj način su bile opovrgnute teorije svetlosti koje su je predstavljale sa čestičnom prirodom.]]
 
U većini teorija razrađenih do -{[[18. vek|XVIII veka]]}-, svetlost je bila posmatrana kao mnoštvo čestica. Jedna od prvih teorija te vrste bila je izložena u „Knjizi o optici“ [[Ibn Al Hajtam|Ibna al Hajtama]] [[1021]]. godine. U njoj je taj naučnik posmatrao [[svetlosni zrak]] u vidu niza malenih čestica koje ne poseduju nikakva kvalitativna čestična svojstva osim energije.<ref name=Rashed>
{{Cite journal
|last=Rashed
|first=R.
|year=2007
|title=The Celestial Kinematics of Ibn al-Haytham
|journal=Arabic Sciences and Philosophy
|volume=17
|issue=1|pages=7-55 [19]
|publisher=Cambridge University Press
|doi=10.1017/S0957423907000355
|citat= U njegovoj optici se „najmanje čestice svetlosti“, kako ih je nazivao, karakterišu samo onim svojstvima koja mogu biti geometrijski opisana i eksperimentalno proverena; one imaju nedostatak svih vidljivih osobina, ali poseduju energiju}} {{en}}</ref>
Pošto slični pokušaji nisu mogli da objasne pojave kao što su to [[prelamanje svetlosti|refrakcija]], [[difrakcija]] i [[dvostruko prelamanje zraka]], bila je predložena [[talasna teorija svetlosti]], koju su postavili [[Rene Dekart]] (1637),<ref>
{{Cite book
| last = [[Rene Dekart|Descartes R.]]
|title=Discours de la méthode ([[Rassuždenie o metode]])
|publisher=Imprimerie de Ian Maire
|year=1637
}} {{fr}}</ref> [[Robert Huk]] (1665),<ref>
{{Cite book
| last = [[Robert Huk|Hooke R.]]
|year=1667
| location = London (UK)
|publisher=Royal Society of London
|url=http://digital.library.wisc.edu/1711.dl/HistSciTech.HookeMicro
|title=Micrographia: or some physiological descriptions of minute bodies made by magnifying glasses with observations and inquiries thereupon...
}}</ref> i [[Kristijan Hajgens]] (1678).<ref>
{{Cite book
| last = [[Kristijan Hajgens|Huygens C.]]
|year=1678
|title=Traité de la lumière
}} {{fr}}. An [http://www.gutenberg.org/etext/14725 English translation] is available from Project Gutenberg ([[projekat „Gutenberg“]])</ref>
Ipak modeli zasnovani na ideji diskretne prirode svetlosti ostali su dominantni, uostalom zbog autoriteta onih koji su je zastupali, kao što je [[Isak Njutn]].<ref name="Newton1730">
{{Cite book
| last = [[Isak Njutn|Newton I.]]
| origyear = 1730
|year=1952
|title=Opticks
| edition=4th|pages=Book II, Part III, Propositions XII–XX; Queries 25–29
| nopp = true
| location=Dover (NY)
|publisher=Dover Publications
|isbn=978-0-486-60205-9
}} {{en}}</ref>
 
Na početku 19. veka [[Tomas Jang]] i [[Ogisten Žan Frenel|Ogisten Žan Frenel]] su jasno demonstrirali u svojim ogledima pojave interferencije i difrakcije svetlosti, posle čega su sredinom 19. veka talasni modeli postali opštepriznati.<ref>
{{Cite book
| last = Buchwald
| first = J. Z.
|year=1989
|title=The Rise of the Wave Theory of Light: Optical Theory and Experiment in the Early Nineteenth Century
|publisher=University of Chicago Press
|isbn=978-0-226-07886-1
| oclc = 18069573
}} {{en}}</ref>
Zatim je to učinio [[Džejms Klerk Maksvel|Džejms Maksvel]] [[1865]]. godine u okviru svoje [[Maksvelove jednačine|teorije]],<ref name="maxwell">
{{cite journal
| last = [[Maksvell, Džeйms Klerk|Maxwell J. C.]]
|year=1865
|title=A Dynamical Theory of the Electromagnetic Field
| journal = [[Philosophical Transactions of the Royal Society of London]]
| volume = 155 |pages=459-512
| doi = 10.1098/rstl.1865.0008
}} {{en}} Ovaj članak je objavljen posle Maksvelovog obraćanja [[Kraljevsko društvo|Kraljevskom društvu]] 8. decembra 1864. godine</ref>
gde navodi da je svetlost [[elektromagnetsko zračenje|elektromagnetni talas]]. Potom je [[1888]]. godine ta hipoteza bila podtvđena eksperimentalno [[Hajnrih Rudolf Herc|Hajnrihom Hercom]], koji je otkrio [[radio-talasi|radio-talase]].<ref name="hertz">
{{cite journal
| last = [[Hajnrih Rudolf Herc|Hertz H.]]
|year=1888
|title=Über Strahlen elektrischer Kraft
| journal = Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin)
| volume = 1888 |pages=1297-1307
}} {{de}}</ref>
 
[[Datoteka:Light-wave-ru.svg|mini|300px|[[Maksvelove jednačine|Talasna teorija Maksvela]] koja je [[elektromagnetsko zračenje|elektromagnetno zračenje]] posmatrala kao talas [[električno polje|električnog]] i [[magnetsko polje|magnetnog polja]] [[1900]]. godine se činila konačnom. Ipak, neki eksperimenti izvedni kasnije nisu našli objašnjenje u okviru ove teorije. To je dovelo do ideje da energija svetlosnog talasa može biti emitovana i apsorbovana u vidu kvanata energije -{hν}-. Dalji eksperimenti su pokazali da svetlosni kvanti poseduju [[impuls]], zbog čega se moglo zaključiti da spadaju u [[elementarna čestica|elementarne čestice]].]] U saglasnosti sa relativističkom predstavom bilo koji objekat koji poseduje energiju poseduje i masu, što objašnjava postojanje impulsa kod elektromagnetnog zračenja. Kvantovanjem tog zračenja i apsorpcijom može se naći impuls pojedinih fotona.
 
[[Maksvelove jednačine|Talasna teorija Maksvela]] ipak nije mogla da objasni sva svojstva svetlosti. Prema toj teoriji, energija svetlosnog talasa zavisi samo od njegovog [[vektor|intenziteta]], ne i od [[frekvencija|frekvencije]]. U stvari rezultati nekih eksperimenata su govorili obrnuto: energija predata atomima od strane svetlosti zavisi samo od frekvencije svetlosti, ne i od njenog intenziteta. Na primer [[fotohemija|neke hemijske reakcije]] mogu se odvijati samo u prisutstvu svetlosti čija frekvencija iznad neke granice, dok zračenje čija je frekvencija ispod te granične vrednosti ne može da izazove začetak reakcije, bez obzira na intenzitet. Analogno, elektroni mogu biti emitovani sa površine metalne ploče samo kada se ona obasja svetlošću čija je frekvencija veća od određene vrednosti koja se naziva [[crvena granica fotoefekta]], a energija tih elektrona zavisi samo od frekvencije svetlosti, ne i njenog intenziteta.<ref>{{Cite book
|author = А. А. Детлаф, Б. М. Яворский
|title = Курс физики
|number = 5-е изд
|location = М.
|publisher = ACADEMA
|year = 2005|pages = 490-493|pages = 720|isbn = 5-7695-2312-3
}}</ref><ref>Zavisnost luminscencije od frekvencije, pp. 276f, fotoelektrični эfekat, odeljak 1.4 u knjizi {{Cite book
| last=Alonso
| first=M.
| last2=Finn
| first2=E. J.
|title=Fundamental University Physics Volume III: Quantum and Statistical Physics
|publisher=Addison-Wesley
|isbn=978-0-201-00262-1
|year=1968
}} {{en}}</ref>
 
Istraživanja svojstava zračenja [[apsolutno crno telo|apsolutno crnog tela]], koja su vršena tokom skoro četrdeset godina (1860—1900),<ref name="Wien1911">
{{cite web
| last=Wien
|first=W.
|year=1911
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1911/wien-lecture.html
|title=Wilhelm Wien Nobel Lecture
}} {{en}}</ref>
zaveršena su formulisanjem hipoteze [[Maks Plank|Maksa Planka]]<ref name="Planck1901">
{{cite journal
| last = [[Maks Plank|Planck M.]]
|year=1901
|title=Über das Gesetz der Energieverteilung im Normalspectrum
| journal = Annalen der Physik
| volume = 4|pages=553-563
| doi = 10.1002/andp.19013090310
}} {{de}}</ref><ref name="Planck1918">
{{cite web
| last = [[Maks Plank|Planck M.]] |year=1920
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html
|title=Max Planck's Nobel Lecture
}} {{en}}</ref>
o tome da energija bilo kog sistema pri emisiji ili apsorpciji elektromagnetnog zračenja frekvencije <math>~\nu </math> može biti promenjena samo za veličinu koja odgovara energiji kvanta <math>~E = h\nu </math>, gde je <math>~h</math> — [[Plankova konstanta]].<ref>{{Cite book
|author = А. А. Детлаф, Б. М. Яворский
|title = Курс физики
|number = 5-е изд
|location = М.
|publisher = ACADEMA
|year = 2005|pages = 485|pages = 720|isbn = 5-7695-2312-3
}}</ref>
[[Albert Ajnštajn]] je pokazao da takva predstava o kvantovanju energije treba da bude prihvaćena, kako bi se objasnila toplotna ravnoteža između supstance i elektromagnetnog zračenja.<ref name="Einstein1905" /><ref name="Einstein1909" /> Na istom osnovu je teorijski bio objašnjen [[fotoelektrični efekat|fotoefekat]], opisan u radu za koji je Ajnštajn [[1921]]. godine dobio [[Nobelova nagrada|Nobelovu nagradu za fiziku]].<ref>{{cite web
| datepublished = 1922-12-10
| url = http://nobelprize.org/nobel_prizes/physics/laureates/1921/press.html
| title = Tekst reči [[Avgust Arenius|Arreniusa]] dlя Nobelevskoй premii po fizike 1921 goda
| publisher = The Nobel Foundation
| accessdate = 13. 3. 2009.
| lang = en
}}</ref>
Nasuprot tome, teorija Maksvela dopušta da elektromagnetno zračenje poseduje bilo koju vrednost energije.
 
Mnogi fizičari su prvobitno pretpostavljali da je kvantovanje energije rezultat nekog svojstva materije koja emituje i apsorbuje elektromagnetne talase. Ajnštajn je [[1905]]. godine pretpostavio da kvantovanje energije predstavlja svojstvo samog elektromagnetnog zračenja.<ref name="Einstein1905" />
Priznajući tačnost Maksvelove teorije, Ajnštajn je primetio da mnoge nesuglasice sa eksperimentalnim rezultatima mogu biti objašnjene ako je energija svetlosnog talasa lokalizovana u [[kvant]]ima, koji se kreću nezavisno jedni od drugih, čak ako se talas neprekidno prostire u prostor-vremenu.<ref name="Einstein1905" />
U godinama između [[1909]].<ref name="Einstein1909">
{{cite journal
| last = [[Albert Ajnštajn|Einstein A.]]
|year=1909
|title=Über die Entwicklung unserer Anschauungen über das Wesen und die Konstitution der Strahlung
| journal = Physikalische Zeitschrift
| volume = 10 |pages=817-825
}} {{de}}. An [[s:The Development of Our Views on the Composition and Essence of Radiation|English translation]] is available from [[Vikizvornik|Wikisource]].
</ref>
i [[1916]],<ref name="Einstein1916b">
{{cite journal
| last = [[Albert Ajnštajn|Einstein A.]]
|year=1916
|title=Zur Quantentheorie der Strahlung
| journal = Mitteilungen der Physikalischen Gesellschaft zu Zürich
| volume = 16|pages=47
}} Takođe ''Physikalische Zeitschrift'', '''18''', 121—128 (1917). {{de}}</ref>
Ajnštajn je pokazao, polazeći od tačnosti zakona zračenja apsolutno crnog tela, da kvant energije takođe mora posedovati impuls <math>~p=h/\lambda</math>,<ref>{{Cite book
|author = А. А. Детлаф, Б. М. Яворский
|title = Курс физики
|number = 5-е изд
|location = М.
|publisher = ACADEMA
|year = 2005|pages = 495|pages = 720|isbn = 5-7695-2312-3
}}</ref>
. Impuls fotona bio je otkrio eksperimentalno<ref name="Compton1923">
{{cite journal
| last = [[Artur Kompton|Compton A.]]
|year=1923
|title=A Quantum Theory of the Scattering of X-rays by Light Elements
|url=http://www.aip.org/history/gap/Compton/01_Compton.html
| journal = [[Physical Review]]
| volume = 21 |pages=483-502
| doi = 10.1103/PhysRev.21.483
}} {{en}}</ref><ref>{{Cite book
|author = А. А. Детлаф, Б. М. Яворский
|title = Курс физики
|number = 5-е изд
|location = М.
|publisher = ACADEMA
|year = 2005|pages = 497-500|pages = 720|isbn = 5-7695-2312-3
}}</ref>
[[Artur Kompton]], za šta je dobio Nobelovu nagradu za fiziku [[1927]]. godine. Ipak, pitanje usaglašavanja talasne teorije Maksvela sa eksperimentalnim činjenicama je ostalo otvoreno.<ref name="Pais1982">
{{Cite book
| last = Pais
| first = A.
|year=1982
|title=Subtle is the Lord: The Science and the Life of Albert Einstein
|url=http://www.questia.com/PM.qst?a=o&d=74596612
|publisher=Oxford University Press
|isbn=978-0-19-853907-0
}} {{en}}</ref>
Niz autora je utvrdio da se emisija i apsorpcija elektromagnetnih talasa dešavaju u porcijama, kvantima, dok je proces njihovog prostiranja neprekidan. Kvantni karakter pojava kao što su zračenje i apsorpcija dokazuje da je nemoguće da mikrosistem poseduje proizvoljnu količinu energije. Korpuskularne predstave su dobro usaglašene sa eksperimentalno posmatranim zakonitostima zračenja i apsorpcije elektromagnetnih talasa, uključujući toplotno zračenje i fotoefekat. Ipak, po mišljenju predstavnika onih koji su zastupali taj pravac eksperimentalni podaci su išli u prilog tome da kvantna svojstva elektromagnetnog talasa ne bivaju ispoljena pri prostiranju, rasejanju i difrakciji, ukoliko pritom ne dolazi do gubitka energije. U procesima prostiranja elektromagnetni talas nije lokalizovan u određenoj tački prostora, ponaša se kao celina i opisuje Maksvelovim jednačinama.
<ref>{{Cite book
|author = А. И. Китайгородский.
|title = Введение в физику
|number = 5-е изд
|location = М.
|publisher = Наука
|year = 1973|pages = 688
}}</ref>
Rešenje je bilo pronađeno u okviru [[kvantna elektrodinamika|kvantne elektrodinamike]].
 
=== Rani pokušaji osporavanja ===
 
[[Datoteka:Bohr-atom-PAR.svg|mini|levo|280p|Do [[1923]]. godine većina fizičara je odbijalo da prihvati ideju da elektromagnetno zračenje poseduje kvantna svojstva. Umesto toga oni su bili skloni objašnjavanju ponašanja fotona kvantovanjem materije, kao na primer u [[Borov model atoma|Borovoj teoriji]] za atom [[vodonik]]a. Mada su svi ovi poluklasični modeli bili samo približno tačni i važili samo za proste sisteme, oni su doveli do stvaranja [[kvantna mehanika|kvantne mehanike]].]]
 
Kao što je pomenuto u nobelovskoj lekciji [[Robert Miliken|Roberta Milikena]], predviđanja koja je Ajnštajn napravio [[1905]]. godine bila su proverena eksperimentalno na nekoliko nezavisnih načina u prve dve decenije 20. veka<ref
name="Millikan1923">{{cite web
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1923/millikan-lecture.html
|title=Robert A. Millikan's Nobel Lecture}} {{en icon}} Opublikovano 23 maя 1924 goda.</ref>.
Ipak, Komptonovog eksperimenta<ref name="Compton1923">{{cite journal
|last = [[Artur Kompton|Compton A.]]
|year=1923
|title=A Quantum Theory of the Scattering of X-rays by Light Elements
|journal = [[Physical Review]]
|volume = 21|pages=483-502}} {{en icon}}</ref>
ideja kvantne prirode elektromagnetnog zračenja nije bila priznata među svim fizičarima (pogledati Nobelovske lekcije [[Vilhelm Vin|Vilhelma Vina]],<ref name="Wien1911">{{cite web
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1911/wien-lecture.html
|title=Wilhelm Wien Nobel Lecture}} {{en icon}} Objavljeno 11 decembra 1911.</ref>
[[Maksa Plank]]<ref name="Planck1918">{{cite web
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1918/planck-lecture.html
|title=Max Planck's Nobel Lecture}} {{en icon}} Objavljeno 2 juna 1920.</ref>
i Roberta Milikena<ref name="Millikan1923" />), što je bilo povezano sa uspesima talasne teorije svetlosti [[Džejms Klerk Maksvel|Maksvela]]. Neki fizičari su smatrali da kvantovanje energije u procesima emisije i apsorpcije svetlosti bilo posledica nekih svojstava supstance koja tu svetlost zrači ili apsorbuje. [[Nils Bor]], [[Arnold Zomerfeld]] i drugi su razrađivali modele atoma sa energetskim nivoima koji su objašnjavali spektar zračenja i apsorpcije kod atoma i bili u saglasnosti sa eksperimentalno utvrđenim [[Spektar (fizička hemija)|spektrom]] vodonika<ref>{{Cite book
|author = Редкин Ю. Н.
|title = Часть 5. Физика атома, твердого тела и атомного ядра
|title = Курс общей физики
|location = Киров
|publisher=VяtGGU
|year = 2006|pages = 12-13|pages = 152
}}</ref>
(ipak, dobijanje adekvatnog spektra drugih atoma ovi modeli nisu omogućavali). Samo rasejanje fotona slobodnim elektronima, koji po tadašnjem shvatanju nisu posedovali unutrašnju strukturu, nateralo je mnoge fizičare da priznaju kvantnu prirodu svetlosti.
 
Ipak čak posle eksperimenata koje je načinio Kompton, Nils Bor, [[Hendrik Kramers]] i [[Džon Slejter]] preduzeli su poslednji pokušaj spašavanja klasičnog modela talasne prirode svetlosti, bez uračunavanja kvantovanja, objavivši [[BKS teorija|BKS teoriju]].<ref name="Bohr1924">
{{cite journal
| last = [[Nils Bor|Bohr N.]]
| coauthors = Kramers, H. A.; Slater, J. C.
|year=1924
|title=The Quantum Theory of Radiation
|journal = Philosophical Magazine
| volume = 47|pages=785-802
}} {{en}} Takođe ''Zeitschrift für Physik'', '''24''', 69 (1924).</ref>
Za objašnjavanje eksperimentalnih činjenica predložili su dve hipoteze<ref>{{Cite book
|author = Кудрявцев, П. С.
|title = Курс истории физики
|url = http://historic.ru/books/item/f00/s00/z0000027/st057.shtml
|number = 2-е изд
|location = М.
|publisher=Просвещение
|year = 1982|pages = 448
}}</ref>:
:1. '''Energija i impuls se održavaju samo [[statistika|statistički]] (po srednjoj vrednosti) pri uzajmnom delovanju materije i zračenja.''' U određenim eksperimentalnim procesima kao što su to emisija i apsorpcija, zakoni [[zakon održanja energje|održanja energije]] i [[zakon održanja impulsa|impulsa]] nisu ispunjeni.<br /> Ta pretpostavka je objašnjavala stepeničastu promenu energije atoma (prelazi na energetskim nivoima) sa neprekidnošću promene energije samog zračenja.
:2. '''Mehanizam zračenja poseduje specifičan karakter.''' [[Spontano zračenje]] posmatrano je kao zračenje stimulisano „virtuelnim“ elektromagnetnim poljem.
 
Ipak eksperimenti Komptona su pokazali da se energija i impuls potpuno održavaju u elementarnim procesima, a takođe da se njegov račun promene učestalosti padajućeg fotona u [[komptonovsko rasejanje|komptonovskom rasejanju]] ispunjava sa tačnošću do 11 znakova. Ipak krah BKS modela inspirisao je [[Verner Hajzenberg|Vernera Hajzenberga]] na stvaranje [[matrična mehanika|matrične mehanike]].<ref name="Heisenberg1932">
{{cite web
|last=[[Verner Hajzenberg|Heisenberg W.]]
|url=http://nobelprize.org/nobel_prizes/physics/laureates/1932/heisenberg-lecture.html
|title=Heisenberg Nobel lecture
|year=1933
}}</ref>
 
Jedan od eksperimenata koji su potvrdili kvantnu apsorpciju svetlosti bio je ogled [[Valter Bote|Valtera Bote]], koji je sproveo [[1925]]. godine. U tom ogledu tanki metalni sloj je bio izložen [[rendgenski zraci|rentgenskom zračenju]] malog intenziteta. Pritom je on sam postao izvor slabog zračenja. Polazeći od klasičnih talasnih predstava to zračenje se u prostoru mora raspoređivati ravnomerno u svim pravcima. U tom slučaju dva instrumenta, postavljena levo i desno od metalnog sloja, trebalo je da ga zabeleže istovremeno. Ipak, rezultat ogleda je pokazivao suprotno: zračenje su beležili čas levi, čas desni instrument i nikad oba istovremeno. To je značilo da se apsorpcija odvija porcijama, tj. kvantima. Ogled je na taj način potvrdio fotonsku teoriju zračenja i postao samim tim još jednim eksperimentalnim dokazom kvantnih svojstava elektromagnetnog zračenja<ref>{{cite web
| author = Л. К. Мартинсон, Е. В. Смирнов
| url = http://rutracker.org/forum/viewtopic.php?t=3353903
| title = Фотонный газ и его свойства
| publisher = Igrflab.ru
| accessdate = 15. 3. 2009.
}}</ref>.
 
Neki fizičari<ref name="Mandel1976">
{{cite journal
| last = Mandel
| first = L.
|year=1976
|title=The case for and against semiclassical radiation theory
| journal = Progress in Optics
| editor = E. Wolf
|publisher=North-Holland
| volume = 13|pages=27-69
}} {{en}}</ref> su nastavili da razrađuju poluklasične modele, u kojim [[elektromagnetsko zračenje|elektromagnetno zračenje]] nije smatrano kvantnim, ali pitanje je dobilo svoje rešenje samo u okviru kvantne mehanike. Ideja korišćenja fotona pri objašnjavanju fizičkih i hemijskih eksperimenata postala je opštepriznata u 70-im godinama 20. veka. Sve poluklasične teorije većina fizičara je smatrala osporenim u 70-im i 80-im godinama u eksperimentima<ref>Rezultati tih eksperimenata ne mogu biti objašnjeni klasičnom teorijom svetlosti. Prvi sličan ekspperiment sproveo je [[1974]]. godine Klauzer, a njegovi rezultati su pokazali netačnost [[nejednakost Koši-Bunavskog|nejednakosti Koši-Bunavskog]]. Sličan efekat je demonstrirao Kimbl [[1977]]. godine. Taj prilaz je uprostio Torn [[2004]]. godine.</ref>.
Na taj način, ideja Planka o kvantnim svojstvima elektromagnetnog zračenja i na osnovu nje razvijena Ajnštajnova hipoteza smatrane su dokazanim.
 
== Fizička svojstva fotona ==
[[Datoteka:Electron-positron-scattering.svg|220px|mini|thumb|[[Fejnmanov dijagram]] na kojem je predstavljena razmena virtuelnim fotonom (označen na slici talasastom linijom) između [[pozitron]]a i [[elektron]]a.]]
 
Foton je čestica bez mase mirovanja. [[Spin]] fotona jednak je 1 (čestica je [[bozoni|bozon]]), ali zbog mase mirovanja jednakoj nuli značajnijom karakteristikom se javlja projekcija spina čestice na pravac kretanja. Foton može biti samo u dva spinska stanja <math>\pm1</math>. Tom svojstvu u [[klasična elektrodinamika|klasičnoj elektrodinamici]] odgovara [[elektromagnetsko zračenje|elektromagnetni talas]].<ref name="physicaldictionary" />
 
[[Masa mirovanja]] fotona smatra se jednakom nuli, što se zasniva na eksperimentu i teorijskim principima. Zbog toga je brzina fotona jednaka [[brzina svetlosti|brzini svetlosti]]. Ako fotonu pripišemo [[relativistička masa|relativističku masu]] (termin polako izlazi iz upotrebe) polazeći od jednakosti <math>m = \tfrac{E}{c^2}</math> vidimo da ona iznosi <math>m = \tfrac{h\nu}{c^2}</math>. Foton je sam svoja [[antičestica]]).<ref>{{cite web
|url = http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/CHASTITSI_ELEMENTARNIE.html?page=0,2
|title = Частицы элементарные
|publisher = [[Кругосвет]]
|accessdate = 13. 3. 2009.
}}</ref>
 
Foton se ubraja u [[bozoni|bozone]]. Učestvuje u [[elektromagnetska sila|elektromagnetnoj]] i [[gravitacija|gravitacionoj]] interakciji.<ref name="physicaldictionary" /> Foton ne poseduje [[naelektrisanje]] i ne raspada se spontano u [[vakuum]]u, stabilan je. Foton može imati jedno od dva stanja [[Polarizacija|polarizacije]] i opisuje se sa tri prostorna parametra koji sastavljaju [[talasni vektor]] koji određuje njegovu talasnu dužinu <math>~\lambda</math> i smer prostiranja.
 
Fotoni nastaju u mnogim prirodnim procesima, na primer, pri ubrzanom kretanju naelektrisanja, pri prelazu atoma ili jezgra iz pobuđenog u osnovno stanje manje energije, ili pri [[anihilacija|anihilaciji]] para elektron-pozitron. Treba primetiti da pri anihilaciji nastaju dva fotona, a ne jedan, pošto u sistemu [[centar mase|centra mase]] čestica koje se sudaraju njihov rezultujući impuls jednak nuli, a jedan dobijeni foton uvek ima impuls različit od nule. [[Zakon održanja impulsa]] stoga traži nastanak bar dva fotona sa ukupnim impulsom jednakom nuli. [[Energija]] fotona, a, samim tim i njihova [[frekvencija]], određena je [[zakon očuvanja energije|zakonom održanja energije]]. Pri obrnutim procesima- pobuđivanju atoma i stvaranju elektron-pozitron para dolazi do apsorpcije fotona. Ovaj proces je dominantan pri prostiranju [[gama-zrak]]a visokih energija kroz supstancu.
 
Ako je energija fotona jednaka <math>~E</math>, onda je [[impuls]] <math>\vec{p}</math> povezan sa energijom jednakošću <math>~E=cp</math>, gde je <math>~c</math> — [[brzina svetlosti]] (brzina kojom se foton uvek kreće kao čestica bez mase). Radi upoređivanja za čestice koje poseduju masu mirovanja, veza mase i impulsa sa energijom određena je formulom <math>~E^{2}=c^{2}p^{2}+m^{2}c^{4}</math>, što pokazuje [[specijalna teorija relativnosti]].<ref>{{cite web
| author = Александр Берков
| url = http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/OTNOSITELNOSTI_TEORIYA_SPETSIALNAYA_%E2%80%93.html?page=0,3
| title = Относительности теория специальная
| publisher = [[Кругосвет]]
| accessdate = 13. 3. 2009.
}}</ref>
 
U vakuumu energija i impuls fotona zavise samo od njegove [[frekvencija|frekvencije]] <math>~\nu</math> (ili, što je ekvivalentno prethodnom, od njegove [[talasna dužina|talasne dužine]] <math>~\lambda=c/\nu</math>):
 
: <math>
E=\hbar\omega=h\nu
</math>,
 
: <math>
\vec{p}=\hbar\vec{k}
</math>,
 
Odatle sledi da je impuls jednak:
 
: <math>
p=\hbar k=\frac{h}{\lambda}=\frac{h\nu}{c}
</math>,
 
gde je <math>~\hbar</math> — [[Dirakova konstanta]], jednaka <math>~h/2\pi</math>; <math>\vec{k}</math> — talasni vektor i <math>~k=2\pi/\lambda</math> — njegova veličina ([[talasni broj]]); <math>~\omega=2\pi\nu</math> — [[ugaona frekvencija]]. Talasni vektor <math>\vec{k}</math> određuje smer kretanja fotona. Spin fotona ne zavisi od njegove frekvencije.
 
Klasične formule za energiju i impuls [[elektromagnetsko zračenje|elektromagnetnog zračenja]] mogu biti dobijeni polaženjem od predstava o fotonu. Na primer [[pritisak zračenja]] postoji usled impulsa koji fotoni predaju telu pri njihovoj apsorpciji. Zaista, pritisak je sila koja deluje na jediničnu površinu, a sila je jednaka promrni impulsa u vremenu<ref>E.g. Appendix XXXII in {{Cite book
|last=[[Born, Maks|Born M.]]
|title=Atomic Physics
|publisher=Blackie & Son
|year=1962
}} {{en icon}}</ref>, pa se otuda javlja taj pritisak.
 
== Korpuskularno-talasni dualizam i princip neodređenosti ==
{{Poseban članak|Korpuskularno-talasni dualizam|Hajzenbergov princip neodređenosti}}
 
Fotonu je svojstven [[korpuskularno-talasni dualizam]]. Sa jedne strane foton pokazuje svojstva talasa u pojavama [[difrakcija|difrakcije]] i [[Interferencija|interferencije]] u slučaju da su karakteristične veličine barijere uporedive sa talasnom dužinom fotona. Na primer, pojedini fotoni prolazeći kroz dvostruki otvor stvaraju na pozadini interferencionu sliku koja se može opisati Maksvelovim jednačinama<ref name="Taylor1909">{{cite journal
|last = Taylor
|first = G. I.
|year=1909
|title=Interference fringes with feeble light
|journal = Proceedings of the Cambridge Philosophical Society
|volume = 15|pages=114-115}} {{en}}</ref>.
Ipak eksperimenti pokazuju da se fotoni emituju i apsorbuju u celini objektima koje imaju dimenzije mnogo manje od talasne dužine fotona, (na primer [[atom]]ima) ili se uopšte mogu smatrati tačkastim (na primer [[elektron]]ima). Na taj način fotoni se u procesu emitovanja i apsorpcije zračenja ponašaju kao čestice. U isto vreme ovakav opis nije dovoljan; predstava o fotonu kao tačkastoj čestici čija je trajektorija određena elektromagnetnim poljem biva opovrgnuta korelacionim eksperimentima sa pomešanim stanjima fotona (pogledati [[Paradoks Ajnštajn-Podolskog-Rozena]]).
 
[[Datoteka:Heisenberg gamma ray microscope.png|mini|desno|200p|[[Misaoni eksperiment]] [[Verner Hajzenberg|Hajzenberga]] o određivanju mesta na kojem se nalazi elektron (obojen plavo) pomoću [[gama-zrak|gama-zračnog]] mikroskopa visokog uvećanja. Padajući gama-zraci (prikazani zelenom bojom) rasejavaju se na elektronu i ulaze v aperturni ugao mikroskopa θ. Rasejani gama-zraci prikazani su na slici crvenom bojom. [[Optika|Klasična optika]] pokazuje da položaj elektrona može biti određen samo sa ograničenom tačnošću vrednosti -{Δ''x''}-, koja zavisi od ugla θ i od [[talasna dužina|talasne dužine]] λ upadnih zraka.]]
 
Ključnim elementom [[kvantna mehanika|kvantne mehanike]] javlja se [[Relacije neodređenosti|Hajzenbergov princip neodređenosti]], koji ne dozovoljava da se istovremeno tačno odrede prostorne koordinate čestice i njen [[impuls]] u tim koordinatama.<ref>{{Cite book
|author = Р. Фейнман, Р. Лейтон, М. Сэндс
|title = 3 - излучение, волны, кванты; 4 - кинетика, теплота, звук
|title = Фейнмановские лекции по физике
|number = 3-е изд
|location = М.
|publisher=Mir
|year = 1976
|volume = 1|pages = 218-220|pages = 496
}}</ref>
 
Važno je primetiti da je kvantovanje svetlosti i zavisnost energije i impulsa od frekvencije neophodno za ispunjavanje principa neodređenosti primenjenog na naelektrisanu masivnu česticu. Ilustracijom toga može poslužiti poznat [[misaoni eksperiment]] sa idealnim mikroskopom koji određuje prostorne koordinate elektrona obasjavanjem istog svetlošću i registrovanjem rasejane svetlosti ([[gama-mikroskop Hajzenberga]]). Položaj elektrona može biti određen sa tačnošću <math>~\Delta x</math>, zavisnom od samog mikroskopa. Polaženjem od predstava [[optika|klasične optike]]:
 
: <math>
\Delta x \sim \frac{\lambda}{\sin \theta},
</math>
 
gde je <math>~\theta</math> — [[aperturni ugao]] mikroskopa. Na taj način se neodređenost koordinate <math>~\Delta x</math> može učiniti jako malom smanjenjem talasne dužine <math>~\lambda</math> upadnih zraka. Ipak posle rasejanja elektron dobija neki dodatni impuls, pri čemu je njegova neodređenost jednaka <math>~\Delta p</math>. Ako upadno zračenje ne bi bilo kvantnim, ta neodređenost bi mogla postati jako mala smanjenjem [[vektor|intenziteta]] zračenja. Talasna dužina i intenzitet upadne svetlosti mogu se menjati zavisno jedan od drugoga. Kao rezultat u odsutstvu kvantovanja svetlosti postalo bi moguće istovremeno sa velikom tačnošću odrediti položaj elektrona u prostoru i njegov impuls, što se protivi principu neodređenosti.
 
Nasuprot tome, Ajnštajnova formula za impuls fotona u potpunosti zadovoljava princip neodređenosti. S obzirom da se foton može rasejati u bilo kom pravcu u granicama ugla <math>~\theta</math>, neodređenost peredatog elektronu impulsa jednaka je:
 
: <math>
\Delta p \sim p_{\mathrm{\phi}} \sin\theta = \frac{h}{\lambda} \sin\theta.
</math>
 
Posle množenja prvog izraza drugim dobija se:
:<math>\Delta x \Delta p \, \sim \, h</math>.
Na taj način ceo svet je kvantovan: ako supstanca podleže zakonima kvantne mehanike onda to mora biti slučaj i sa fizičkim poljem, i obrnuto <ref>Sm., na primer, pp. 10f v {{Cite book
|last=Schiff|first=L.I.
|title=Quantum Mechanics
| edition=3rd
|publisher=[[McGraw-Hill]]
|year=1968
|isbn=978-0-07-055287-6
}}</ref>.
 
Analogno, princip neodređenosti fotonima zabranjuje tačno mernje broja <math>~n</math> fotona u elektromagnetnom talasu i [[Faza|fazu]] <math>~\varphi</math> tog talasa:
 
: <math>
~\Delta n \Delta \varphi > 1.
</math>
 
I fotoni, i [[elementarna čestica|čestice]] supstance (elektroni, [[nukleon|nukleoni]], atomska jezgra, atomi itd.), koje poseduju masu mirovanja pri prolasku kroz dva blisko postavljena uska otvora daju slične [[interferencija|interferencione slike]]. Za fotone se ta pojava može opisati [[Maksvelove jednačine|Maksvelovim jednačinama]], dok se za masivne čestice koristi [[Šredingerova jednačina|Šredingerova jednačina]]. Moglo bi se pretpostaviti da su [[Maksvelove jednačine]] samo uprošćen oblik [[Šredingerova jednačina|Šredingerove jednačine]] za fotone. Ipak sa tim se ne slaže većina fizičara<ref>
{{Cite book
| last = Kramers
| first = H. A.
|year=1958
|title=Quantum Mechanics
|publisher=North-Holland
| location = Amsterdam
|id=}} {{en}}</ref><ref>
{{Cite book
| last = Bohm
| first = D.
| origyear = 1954 |year=1989|url=http://books.google.ca/books?id=9DWim3RhymsC&dq=Quantum+Theory+David+Bohm&printsec=frontcover&source=bn&hl=en&sa=X&oi=book_result&resnum=5&ct=result|title=Quantum Theory|publisher=Dover Publications|isbn=978-0-486-65969-5
}} {{en}}</ref>.
S jedne strane te jednačine se razlikuju u matematičkom smislu: za razliku od Maksvelovih jednačina (koje opisuju polje tj. stvarne funkcije koordinata i vremena), Šredingerova jednačina je kompleksna (njeno rešenje je polje koje uopšteno govoreći predstavlja kompleksnu funkciju). S druge stane pojam verovatnoće [[talasna funkcija|talasne funkcije]] koji ulazi u Šredingerovu jednačinu ne može biti primenjen na foton.<ref>
{{cite journal
| last = Newton
| first = T. D.
| coauthors = Wigner, E. P.
|year=1949
|title=Localized states for elementary particles
| journal = [[Reviews of Modern Physics]]
| volume = 21 |pages=400-406
| doi = 10.1103/RevModPhys.21.400
}} {{en}}</ref>
Foton je čestica bez mase mirovanja, zato on ne može biti lokalizovan u prostoru bez uništenja. Formalno govoreći, foton ne možet imati koordinatno [[sopstveno stanje]] <math>|\mathbf{r} \rangle</math> i na taj način običan Hajzenbergov princip neodređenosti <math>\Delta x \Delta p \, \sim \, h</math> se na njega ne može primenti. Bili su predloženi izmenjeni oblici talasne funkcije za fotone,<ref>
{{cite journal
| last = Bialynicki-Birula
| first = I.
|year=1994
|title=On the wave function of the photon
| journal = Acta Physica Polonica A
| volume = 86|pages=97-116
}} {{en}}</ref><ref>
{{cite journal
| last = Sipe
| first = J. E.
|year=1995
|title=Photon wave functions
| journal = [[Physical Review A]]
| volume = 52|pages=1875-1883
| doi = 10.1103/PhysRevA.52.1875
}} {{en}}</ref><ref>
{{cite journal
| last = Bialynicki-Birula
| first = I.
|year=1996
|title=Photon wave function
| journal = Progress in Optics
| volume = 36|pages=245-294
| doi = 10.1016/S0079-6638(08)70316-0
}} {{en}}</ref><ref>
{{Cite book
| last = Scully
| first = M. O.
| coauthors = Zubairy, M.S.
|year=1997
|title=Quantum Optics
|publisher=Cambridge University Press
| location = Cambridge (UK)
|isbn=978-0-521-43595-6|url=http://books.google.ca/books?id=20ISsQCKKmQC&dq=Quantum+Optics+Scully&printsec=frontcover&source=bl&ots=yQRLONICly&sig=3IaSAD8iKOJziwawLoq539zNevY&hl=en&sa=X&oi=book_result&resnum=2&ct=result
}} {{en}}</ref>
ali oni nisu postali opštepriznati. Umesto toga rešenje se traži u [[kvantna elektrodinamika|kvantnoj elektrodinamici]].
 
== Boze-Ajnštajnov model fotonskog gasa ==
{{Poseban članak|Boze-Ajnštajnova statistika}}
 
Kvantna statistika primenjna na čestice sa celobrojnim [[spin]]om bila je predložena [[1924]]. godine od strane indijskog fizičara [[Šatendranat Boze|Bozea]] za svetlosne kvante i proširena zahvaljujući [[Albert Ajnštajn|Ajnštajnu]] na sve bozone. Elektromagnetno zračenje unutar neke zapremine može se posmatrati kao [[idealni gas]] koji se sastoji iz mnoštva fotona između kojih praktično ne postoji interakcija. [[Ravnotežno stanje (termodinamika)|Termodinamička ravnoteža]] tog fotonskog gasa dostiže se putem interakcije sa zidovima. Ona nastaje kada zidovi emituju onoliko fotona u jedinici vremena koliko i apsorbuju.<ref name="stat_physics">{{Cite book
|author = А. С. Василевский, В. В. Мултановский
|title = Статистическая физика и термодинамика
|location = М.
|publisher=Просвещение
|year = 1985|pages = 163-167|pages = 256
}}</ref>
Pritom se unutar zapremine postoji određena [[raspodela (teorija verovatnoće)|raspodela]] čestica po energijama. [[Boze]] je dobio [[toplotno zračenje|Plankov zakon zračenja apsolutno crnog tela]], uopšte ne koristeći [[elektrodinamika|elektrodinamiku]], samo modifikujući račun [[kvantno stanje|kvantnih stanja]] sistema fotona u datoj [[faza|fazi]].<ref name="Bose1924">
{{cite journal
| last = Bose
| first = S.N.
|year=1924
|title=Plancks Gesetz und Lichtquantenhypothese
| journal = Zeitschrift für Physik
| volume = 26|pages=178-181
| doi = 10.1007/BF01327326
}} {{de}}</ref>
Tako je bilo ustanovljeno da broj fotona u apsolutno crnoj oblasti, energija kojih se proteže na intervalu od <math>~\varepsilon</math> do <math>\varepsilon+d\varepsilon,</math> jednak:<ref name="stat_physics" />
 
: <math>
d n (\varepsilon) = \frac{V \varepsilon d \varepsilon^2}{\pi^2 \hbar^3 c^3 (e^{\varepsilon/kT} - 1)},
</math>
gde je <math>~V</math> — njena zapremina, <math>~\hbar</math> — [[Dirakova konstanta]], <math>~T</math> — [[temperatura]] ravnotežnog fotonskog gasa (ekvivalentna temperaturi zidova).
 
U ravnotežnom stanju elektromagnetno zračenje apsolutno crnog tela se opisuje istim termodinamičkim parametrima kao i običan gas: [[zapremina|zapreminom]], temperaturom, energijom, [[entropija|entropijom]] i dr. Zračenje vrši [[pritisak elektromagnetnog zračenja|pritisak]] <math>~P</math> na zidove pošto fotoni poseduju impuls.<ref name="stat_physics" /> Veza tog pritiska i temperature izražena je jednačinom stanja fotonskog gasa:
: <math>
P = \frac{1}{3} \sigma T^4,
</math>
gde je <math>~\sigma</math> — [[Stefan-Bolcmanova konstanta]].
 
Ajnštajn je pokazao da je ta modifikacija ekvivalentna priznavanju toga da se dva fotona principijelno ne mogu razlikovati, a među njima postoji „tajanstvena nelokalizovana interakcija“,<ref name="Einstein1924">
{{cite journal
| last = [[Albert Ajnštajn|Einstein A.]]
|year=1924
|title=Quantentheorie des einatomigen idealen Gases
| journal = Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse
| volume = 1924|pages=261-267
}} {{de}}</ref><ref name="Einstein1925">
{{cite journal
| last = [[Albert Ajnštajn|Einstein A.]]
|year=1925
|title=Quantentheorie des einatomigen idealen Gases, Zweite Abhandlung
| journal = Sitzungsberichte der Preussischen Akademie der Wissenschaften (Berlin), Physikalisch-mathematische Klasse
| volume = 1925|pages=3-14
}} {{de}}</ref>
sada shvaćena kao potreba simetričnosti kvantnomehaničkih stanja u odnosu na preraspodelu čestica. Taj rad doveo je do stvaranja koncepcije [[koherentnost|koherentnih stanja]] i pogodovao stvaranju [[laser]]a. U istim člancima Ajnštajn je proširio predstave Bozea na [[elementarna čestica|elementarne čestice]] sa celobrojnim spinom ([[bozoni|bozone]]) i predvideo pojavu masovnog prelaza čestica [[bozonski gas|bozonskog gasa]] u stanje sa minimalnom energijom pri smanjenju temperature do nekog kritičnog nivoa (pogledati [[Boze-Ajnštajnova kondenzacija]]). Ovaj efekat je [[1995]]. godine posmatran eksperimentalno, a [[2001]]. autorima eksperimenta bila je uručena [[Nobelova nagrada]].<ref>
{{cite journal
| last = Anderson
| first = M. H.
| coauthors = Ensher, J. R.; Matthews, M. R.; Wieman, C. E.; Cornell, E. A.
|title=Observation of Bose–Einstein Condensation in a Dilute Atomic Vapor
| journal=[[Science (časopis)|Science]]
|year=1995
| volume=269|pages=198-201
|url=http://links.jstor.org/sici?sici=0036-8075%2819950714%293%3A269%3A5221%3C198%3AOOBCIA%3E2.0.CO%3B2-G
| doi=10.1126/science.269.5221.198
| pmid=17789847
}} {{en}}</ref>
Po savremenom shvatanju bozoni, u koje se ubraja i foton, podležu [[Boze-Ajnštajnova statistika|Boze-Ajnštajnovoj statistici]], a [[fermioni]], na primer [[elektron]]i, [[Fermi-Dirakova statistika|Fermi-Dirakovoj statistici]].{{sfn|Streater|Wightman|2000|pp=}}
 
== Spontano i prinudno zračenje<ref>{{Cite book
|author = Р. Фейнман, Р. Лейтон, М. Сэндс
|title = 3 - излучение, волны, кванты; 4 - кинетика, теплота, звук
|title = Фейнмановские лекции по физике
|number = 3-е изд
|location = М.
|publisher=Мир
|year = 1976
|volume = 1|pages = 311-315|pages = 496
}}</ref> ==
{{Poseban članak|Laser}}
 
Ajnštajn je [[1916]]. godine pokazao da [[Plankov zakon zračenja]] za [[apsolutno crno telo]] može biti izveden polaženjem od sledećih poluklasičnih predstava:
# Elektroni se u [[atom]]ima nalaze na [[energetski nivoi|energetskim nivoima]];
# Pri prelazu elektrona među tim nivoima atom emituje ili apsorbuje foton.
Osim toga smatralo se da emitovanje i apsorpcija svetlosti atomima dešava nezavisno jedno od drugoga i da [[toplotna ravnoteža]] u sistemu biva održana usled interakcije sa atomima. Posmatrajmo zapreminu koja se nalazi u toplotnoj ravnoteži i koja je ispunjena elektromagnetnim zračenjem koje može biti emitovano i apsorbovana zidivima koji je ograničavaju. U stanju toplotne ravnoteže [[spektralna gustina zračenja]] je <math>~\rho(\nu)</math> i zavisi od frekvencije fotona <math>~\nu</math> dok po srednjoj vrednosti ne zavisi od vremena. To znači da verovatnoća emitovanja fotona proizvoljnog fotona mora biti jednaka verovatnoći njegove apsorpcije.<ref name="Einstein1916a">
{{cite journal
| last = [[Albert Ajnštajn|Einstein A.]]
|year=1916a
|title=Strahlungs-emission und -absorption nach der Quantentheorie
| journal = Verhandlungen der Deutschen Physikalischen Gesellschaft
| volume = 18|pages=318-323
}} {{de}}</ref>
 
Ajnštajn je počeo da traži proste uzajamne veze među brzinom apsorpcije i emitovanja. U njegovom modelu brzina <math>~R_{ji}</math> apsorpcije fotona frekvencije <math>~\nu</math> i prelaza atoma sa energetskog nivoa <math>~E_{j}</math> na nivo više energije <math>~E_{i}</math> je proporcionalna broju <math>~N_{j}</math> atoma sa energijom <math>~E_{j}</math> i [[spektralna gustina zračenja|spektralne gustine zračenja]] <math>~\rho(\nu)</math> za okolne fotone iste frekvencije:
 
: <math>
~R_{ji} = N_{j} B_{ji} \rho(\nu)
</math>.
 
Ovde je <math>~B_{ji}</math> konstanta brzine apsorpcije. Za ostvarenje suprotnog procesa postoji dve mogućnosti: [[spontano zračenje]] fotona i vraćanje elektrona na niži energetski nivo usled interakcije sa slučajnim fotonom. U saglasnosti sa gore opisanim prilazom odgovarajuća brzina <math>~R_{ij}</math>, koja karakteriše zračenje sistema fotona frekvencije <math>~\nu</math> i prelaz atoma sa višeg energetskog nivoa <math>~E_{i}</math> na nivo manje energije <math>~E_{j}</math>, jednaka je:
 
: <math>
~R_{ij} = N_{i} A_{ij} + N_{i} B_{ij} \rho(\nu)
</math>.
 
Ovde je <math>~A_{ij}</math> — koeficijent spontanog zračenja, <math>~B_{ij}</math> — koeficijent odgovoran za [[prinudno zračenje]] pod dejstvom slučajnih fotona. Pri [[ravnotežno stanje (termodinamika)|termodinamičkoj ravnoteži]] broj atoma u energetskom stanju <math>~i</math> i <math>~j</math> po srednjoj vrednosti mora biti konstantan u vremenu, odakle sledi da veličine <math>~R_{ji}</math> i <math>~R_{ij}</math> moraju biti jednake. Osim toga, po analogiji sa [[Bolcmanova statistika|Bolcmanovom statistikom]]:
 
: <math>
\frac{N_i}{N_j} = \frac{g_i}{g_j}\exp{\frac{E_j-E_i}{kT}}
</math>,
 
gde je <math>~g_{i,j}</math> — broj linearno nezavisnih rešenja koje odgovaraju datom kvantnom stanju i energiji energetskog nivoa <math>~i</math> i <math>~j</math>, <math>~E_{i,j}</math> — energija tih nivoa, <math>~k</math> — [[Bolcmanova konstanta]], <math>~T</math> — temperatura sistema. Iz rečenog sledi zaključak da <math>~g_iB_{ij} = g_jB_{ji}</math> i:
 
: <math>
A_{ij} = \frac{8 \pi h \nu^{3}}{c^{3}} B_{ij}
</math>.
 
Koeficijenti <math>~A</math> i <math>~B</math> nazivaju se [[Ajnštajnovi koeficijenti|Ajnštajnovim koeficijentima]].{{sfn|Wilson|Hawkes|1987|pp=}}
 
Ajnštajn nije uspeo gustinom da objasni sve ove jednačine ali je smatrao da će ubuduće biti moguće da se pronađu koeficijenti <math>~A_{ij}</math>, <math>~B_{ji}</math> i <math>~B_{ij}</math>, kada „mehanika i elektrodinamika budu izmenjene tako da će odgovarati kvantnoj hipotezi“.<ref name="Einstein1">P. 322 in {{cite journal
| last = [[Albert Ajnštajn|Einstein A.]]
|year=1916a
|title=Strahlungs-emission und -absorption nach der Quantentheorie
| journal = Verhandlungen der Deutschen Physikalischen Gesellschaft
| volume = 18|pages=318-323
}} {{de}}: {{citat|Die Konstanten <math>A^n_m</math> and <math>B^n_m</math> würden sich direkt berechnen lassen, wenn wir im Besitz einer im Sinne der Quantenhypothese modifizierten Elektrodynamik und Mechanik wären."}}</ref>
I to se stvarno dogodilo. [[Pol Dirak]] je [[1926]]. godine dobio konstantu <math>~B_{ij}</math>, koristeći poluklasični metod,<ref name="Dirac1926">{{cite conference
| last = [[Pol Dirak|Dirac P. A. M.]]
|year=1926
|title=On the Theory of Quantum Mechanics
| booktitle = Proceedings of the Royal Society A
| volume = 112|pages=661-677
| doi = 10.1098/rspa.1926.0133
}} {{en}}</ref>
a [[1927]]. godine uspešno je našao sve te konstante polazeći od osnovnih principa [[kvantna mehanika|kvantne teorije]].<ref name="Dirac1927a">{{cite conference
| last = [[Pol Dirak|Dirac P. A. M.]]
|year=1927a
|title=The Quantum Theory of the Emission and Absorption of Radiation
| journal = Proceedings of the Royal Society A
| volume = 114|pages=243-265
}} {{en}}</ref><ref name="Dirac1927b">{{cite conference
| last = [[Pol Dirak|Dirac P. A. M.]]
|year=1927b
|title=The Quantum Theory of Dispersion
| journal = Proceedings of the Royal Society A
| volume = 114|pages=710-728
}} {{en}}</ref>
Taj rad je postao osnovom [[kvantna elektrodinamika|kvantne elektrodinamike]], tj. teorije kvantovanja [[elektromagnetsko polje|elektromagnetnog polja]]. Prilaz Diraka, nazvan metodom [[sekundarno kvantovanje|sekundarnog kvantovanja]], postao je jednim od osnovnih metoda [[kvantna teorija polja|kvantne teorije polja]].<ref name="Heisenberg1929">{{cite journal
| last = [[Verner Hajzenberg|Heisenberg W.]]
| coauthors = Pauli, W.
|year=1929
|title=Zur Quantentheorie der Wellenfelder
| journal = Zeitschrift für Physik
| volume = 56|pages=1
| doi = 10.1007/BF01340129
}} {{de}}</ref><ref name="Heisenberg1930">{{cite journal
| last = [[Verner Hajzenberg|Heisenberg W.]]
| coauthors = Pauli, W.
|year=1930
|title=Zur Quantentheorie der Wellenfelder
| journal = Zeitschrift für Physik
| volume = 59|pages=139
| doi = 10.1007/BF01341423
}} {{de}}</ref><ref name="Fermi1932">{{cite journal
| last = [[Enriko Fermi|Fermi E.]]
|year=1932
|title=Quantum Theory of Radiation
| journal = [[Reviews of Modern Physics]]
| volume = 4|pages=87
| doi = 10.1103/RevModPhys.4.87
}} {{en}}</ref> Treba primetiti da su u ranoj kvantnoj mehanici samo čestice supstance, a ne i elektromagno polje, smatrane kvantnomehaničkim.
 
Ajnštajn je bio uznemiren time da mu se teorija činila nepotpunom, još više pošto nije mogla da opiše smer spontanog zračenja fotona. Prirodu kretanja svetlosnih čestica sa aspekta verovatnoće najpre je razmotrio [[Isak Njutn]] u svom objašnjenju pojave [[dvostruko prelamanje zraka|dvostrukog prelamanja zraka]] (efekat razlaganja svetlosnog zraka na dve komponente u [[anizotropija|anizotropnim sredinama]]) i uopšteno govoreći pojave razlaganja svetlosnog zraka na granici dve sredine na odbijeni i prelomljeni zrak. Njutn je pretpostavio da „skrivene promenljive“, koje karakterišu svetlosne čestice određuju u koju od graničnih sredina će otići data čestica.<ref name="Newton1730" /> Analogno se i Ajnštajn, počevši sa distanciranjem od kvantne mehanike, nadao nastanku opštije teorije mikrosveta u kojoj nema mesta slučajnosti.<ref name="Pais1982" /> Treba primetiti da [[Maks Born|Maksom Bornom]] uvedena interpretacija [[talasna funkcija|talasnih funkcija]] preko verovatnoće<ref name="Born1926a">{{cite journal
| last = [[Maks Born|Born M.]]
|year=1926a
|title=Zur Quantenmechanik der Stossvorgänge
| journal = Zeitschrift für Physik
| volume = 37|pages=863-867
| doi = 10.1007/BF01397477
}} {{de}}</ref><ref name="Born1926b">{{cite journal
| last = [[Maks Born|Born M.]]
|year=1926b
|title=Zur Quantenmechanik der Stossvorgänge
| journal = Zeitschrift für Physik
| volume = 38 |pages=803
| doi = 10.1007/BF01397184
}} {{de}}</ref>
bila stimulisana poznim radom Ajnštajna koji je tražio opštu teoriju.<ref name="ghost_field">{{Cite book
| last = Pais
| first = A.
|year=1986
|title=Inward Bound: Of Matter and Forces in the Physical World
|publisher=Oxford University Press
|isbn=978-0-19-851997-3
}} {{en}} Born je izjavio da je bio inspirisan neobjavljenim pokušajima Ajnštajna da razvije teoriju sa koncepcijom tačkastih fotona koji su se kretali po zakonima verovatnoće i u skladu sa Maksvelovim jednačinama.</ref>
 
== Sekundarno kvantovanje ==
{{Poseban članak|Kvantna teorija polja|Sekundarno kvantovanje}}
 
[[Datoteka:Visible EM modes.png|mini|thumb|200px|Različiti elektromagnetni moduli (na primer označeni na slici) mogu biti posmatrani kao nezavisni [[kvantni harmonijski oscilator]]i. Svaki foton odgovara jediničnoj energiji E=hν.]]
 
[[Piter Debaj]] dobio je [[1910]]. godine [[Plankov zakon zračenja]] za [[apsolutno crno telo]] polazeći od relativno jednostavne pretpostavke.<ref name="Debye1910">
{{cite journal
| last = [[Peter Debaj|Debye P.]]
|year=1910
|title=Der Wahrscheinlichkeitsbegriff in der Theorie der Strahlung
| journal = Annalen der Physik
| volume = 33|pages=1427-1434
| doi = 10.1002/andp.19103381617
}} {{de}}</ref>
On je razložio elektromagnetno polje na [[Furijeov red]] i pretpostavio da energija svakog [[modul]]a celobrojni delilac veličine <math>~h\nu,</math> gde <math>~\nu</math> je odgovarajuća frekvencija. Geometrijska suma dobijenih modula predstavlja Plankov zakon zračenja. Ipak pokazalo se da je nemoguće korišćenjem datog prilaza dobiti tačan oblik formule za [[fluktuacija|fluktacije]] energije [[toplotno zračenje|toplotnog zračenja]]. Rešenje ovog problema pronašao je Ajnštajn [[1909]]. godine.<ref name="Einstein1909" />
 
[[Maks Born]], [[Verner Hajzenberg]] i [[Paskval Jordan]] su [[1925]]. godine dali nešto drugačiju interpretaciju Debajeve metode.<ref name="Born1925">
{{cite journal
| last = [[Maks Born|Born M.]]
| coauthors = Heisenberg, W.; Jordan, P.
|year=1925
|title=Quantenmechanik II
| journal = Zeitschrift für Physik
| volume = 35 |pages=557-615
| doi = 10.1007/BF01379806
}} {{de}}</ref>
Koristeći klasične može se pokazati da je Furijeov red elektromagnetnog polja sastoji iz mnoštva ravnih talasa pri čemu svaki od njih odgovara svom [[talasni vektor|talasnom vektoru]] i svojem stanju [[Polarizacija|polarizacije]] što je ekvivalentno mnoštvu [[harmonijski oscilator|harmonijskih oscilatora]]. Sa aspekta kvantne mehanike energetski nivoi tih oscilatora bivaju određeni odnosom <math>~E = nh\nu,</math> gde je <math>~\nu</math> frekvencija oscilatora. Principijelno novim korakom postalo je to da je modul sa energijom <math>~E = nh\nu</math> posmatran ovde kao stanje od <math>~n</math> fotona. Takav metod omogućio je dobijanje ispravnog oblika formule za fluktacije energije zračenja apsolutno crnog tela.
 
[[Datoteka:vertex correction.svg|mini|levo|U kvantnoj teoriji polja verovatnoća da dođe do nekog događaja izrčunava se kao kvadrat [[modul kompleksnog broja|modula]] sume [[amplituda verovatnoće]] ([[kompleksan broj|kompleksnih brojeva]]) svih mogućih načina na koji se dati događaj može realizovati kao na [[Fejnmanov dijagram|Fejnmanovom dijagramu]], postavljenom ovde.]]
 
[[Pol Dirak]] je otišao još dalje.<ref name="Dirac1927a" /><ref name="Dirac1927b" /> On je posmatrao interakciju između naelektrisanja i elektromagnetnog polja kao mali poremećaj koji izaziva prelaze u fotonskim stanjima menjajući broj fotona u modulima pri održanju celookupne energje i impulsa sistema. Dirak je pošavši od toga uspeo da dobije Ajnštajnoove koeficijente <math>~A_{ij}</math> i <math>~B_{ij}</math> iz prvih principa i pokazao da je Boze-Ajnštajnova statistika za fotone prirodna posledica korektnog kvantovanja elektromagnetnog polja (sam Boze se kretao u suprotnom smeru — on je dobio Plankov zakon zračenja za apsolutno crno telo postuliranjem statističke raspodele Boze — Ajnštajna). U to doba još nije bilo poznato da svi bozoni, uključujući i fotone podležu Boze-Ajnštajnovoj statistici.
 
Dirakova [[teorija poremećaja]] uvodi pojam [[virtuelna čestica|virtuelnog fotona]], kratkotrajnog prelaznog stanja elektromagnetnog polja. [[Kulonov zakon|Elektrostatička]] i [[magnetizam|magnetna]] interakcija ostvaruje se putem takvih virtualnih fotona. U takvim [[kvantna teorija polja|kvantnim teorijama polja]] amplituda verovatnoće posmatranih događaja se računa sumiranjem po svim mogućim prelaznim putevima, uključujući čak nefizičke; pošto virtuelni fotoni ne moraju zadovoljavati [[disperzion odnos|disperzioni odnos]] <math>~E=pc</math>, ispunjen za fizičke čestice bez mase, i mogu imati dodatna polarizaciona stanja (kod realnih fotona postoje dva stanja polarizacije dok kod virtualnih — tri ili četiri, u zavisnosti od korišćene [[kalibracija vektorskog potencijala|kalibracije]]). Mada virtuelne čestice pa i virtuelni fotoni ne mogu biti posmatrani neposredno,<ref>{{Cite book
|author = Статья А. В. Ефремова
|title=Физический энциклопедический словарь
|publisher=М.: Советская энциклопедия
|year=1984|pages=78-}}</ref>
oni unose merljiv udeo u verovatnoću posmatranih kvantnih stanja. Šta više, račun po drugom i višim redovima teorije poremećaja ponekad dovodi do [[beskonačnost|beskonačno velikih]] vrednosti za neke [[fizička veličina|fizičke veličine]]. Druge virtuelne čestice takođe mogu doprineti vrednosti sume. Na primer, dva fotona mogu interagovati posredstvom virtuelnog [[elektron]]-[[pozitron]] para.<ref>Photon-photon-scattering section 7-3-1, renormalization chapter 8-2 in {{Cite book
|last=Itzykson
|first=C.
|last2=Zuber
|first2=J.-B.
|title=Quantum Field Theory
|publisher=McGraw-Hill
|year=1980|isbn=978-0-07-032071-0
}} {{en}}</ref>
Taj mehanizam će biti u osnovi [[Međunarodni linearni kolajder|Međunarodnog linearnog kolajdera]].<ref>
{{Cite journal
|last=Weiglein
|first=G.
|title=Electroweak Physics at the ILC
|journal=Journal of Physics: Conference Series
|volume=110|pages=042033
|year=2008
|doi=10.1088/1742-6596/110/4/042033
}} {{en}}</ref>
 
Matematički metod sekundarnog kvantovanja sastoji se u tome da kvantni sistem sastavljen od velikog broja principijelno ekvivalentnih čestica, opisuje pomoću talasnih funkcija, u kojem ulogu nezavisnih parametara ima broj popunjavanja. Sekundarno kvantovanje ostvaruje se uvođenjem [[operacija (matematika)|operatora]], koji povećavaju i smanjuju broj čestica u datom stanju (broj popunjavanja) na jedan. Ti operatori se ponekad nazivaju operatorima [[operator rađanja|rađanja]] i [[operator uništenja|uništenja]]. Matematička svojstva operatora popunjavanja i uništavanja određena su spinom čestica. Pri takvom opisu talasna funkcija sama postaje operator.<ref>{{Cite book
|author = Статья А. В. Ефремова
|title=Физический энциклопедический словарь
|publisher=М.: Советская энциклопедия
|year=1984|pages=94-}}</ref>
 
U savremenom fizičkom obeležavanju kvantno stanje elektromagnetnog polja se zapisuje kao [[Fokovsko stanje]], [[tenzorski proizvod]] stanja svakog elektromagnetnog modula:
 
: <math>|n_{k_0}\rangle\otimes|n_{k_1}\rangle\otimes\dots\otimes|n_{k_n}\rangle\dots,</math>
 
gde <math>~|n_{k_i}\rangle</math> predstavlja stanje sa celim brojem fotona <math>~n_{k_i},</math> koji se nalaze u modulu <math>~k_i.</math> Stvaranje novog fotona (na primer emitovanog v atomskom prelazu) u modolu <math>~k_i</math> se zapisuje ovako:
 
: <math>|n_{k_i}\rangle \rightarrow |n_{k_i}+1\rangle.</math>
 
== Struktura fotona ==
{{Poseban članak|Kvantna hromodinamika}}
Saglasno [[kvantna hromodinamika|kvantnoj hromodinamici]], realni foton može interagovati ne samo kao pojedinačna tačkasta čestica, već i kao mnoštvo [[kvark]]ova i [[gluon]]a, poput [[hadron]]a. Strukturu fotona određuju ne skupovi valentnih kvarkova (kao na primer strukturu protona), a [[virtuelna čestica|virtuelne]] fluktacije tačkastog fotona u skupu [[parton]]a.<ref name="sm2001">[http://www.slac.stanford.edu/grp/th/LCBook/qcd.ps.gz QCD and Two-Photon Physics], in Linear Collider Physics Resource Book for Snowmass 2001, Chapter 7, LC-REV-2001-074-US. {{en}}</ref> Ta svojstva se projavljuju tek pri dovoljno velikim energijama, počinjući od ~1 giga[[elektronvolt]]i.
 
== Foton kao bozon ==
{{Poseban članak|Kalibracija}}
 
Maksvelove jednačine koje opisuju elektromagnetno polje mogu biti dobijene na osnovu teorije [[kalibracija|kalibracije]] kao posledica kalibrične invarijantnosti [[elektron]]a u odnosu na transformacije [[prostor-vreme|prostorno-vremenskih]] koordinata.<ref name="Ryder">
{{Cite book
| last = Ryder
| first = L. H.
|year=1996
|title=Quantum field theory
| edition = 2nd
|publisher=Cambridge University Press
|isbn=978-0-521-47814-4
| oclc = 32853321
}} {{en}}</ref>{{sfn|Statья Э. A. Efremova|1984|pp=237-239}}
Za elektromagnetno polje ta [[kalibrična simetrija]] izražava sposobnost kompleksnih brojeva menjanja [[imaginarni deo kompleksnog broja|imaginarnog dela]] bez delovanja na [[realni broj|realni]], kakav slučaju sa [[energija|energijom]] ili [[Žozef Luj Lagranž|Lagranžom]].
 
Kvant takvog [[kalibrično polje|kalibričnog polja]] mora biti nenaelektrisan bozon bez mase, dok se simetrija ne naruši. Zato se foton (koji je u stvari kvant elektromagnetnog polja) u savremnoj fizici posmatra kao čestica bez mase i naelektrisanja sa celobrojnim spinom. Korpuskularni model [[elektromagnetska sila|elektromagnetne interakcija]] pripisuje fotonu [[spin]] jednak <math>\pm 1</math>. Sa tačke gledišta klasične fizike spin fotona se može interpretirati kao parametar, odgovoran za polaraizaciono stanje svetlosti<ref>{{Cite book
|author = Редкин Ю. Н.
|title = Часть 4. Оптика
|title = Курс общей физики
|location = Киров
|publisher=ВятГГУ
|year = 2003|pages = 80|pages = 132
}}</ref>). Virtuelni fotoni uvedeni u okviru kvantne elektrodinamike mogu se takođe nalaziti u nefizičkim polarizacionim stanjima.<ref name="Ryder" />
 
U Standardnom modelu foton je jedan od četiri [[bozon]]a koji ostvaraju [[slaba interakcija|slabu interakciju]]. Ostala tri (W<sup>+</sup>, W<sup>−</sup> i Z<sup>0</sup>) nazivaju se [[vektorski bozon|vektorskim bozonima]] i odgovorni su samo za slabu intearakciju. Za razliku od fotona kod vektorskih bozona postoji [[invarijantna masa]], oni moraju imati masu s obzirom da se slaba interakcija jasno projavljuje tek na jako malim rastojanjima, <10<sup>−15</sup> -{sm}-. Ipak, kvanti kalibričnih polja moraju biti bez mase, jer pojava iste kod njih narušava kalibričnu invarijantnost jednačina kretanja. Ovaj problem je rešio [[Piter Higs]], pošto je teorijski opisao pojavu [[spontano narušavanje elektroslabe simetrije|spontanog narušavanja elektroslabe simetrije]]. To rešenje je dozvolilo učiniti vektorske bozone masivnim narušavnja simetrije kalibracije u samim jednačinama kretanja.{{sfn|Statья Э. A. Efremova|1984|pp=237-239}} Objedinjenje fotona sa -{W}- i -{Z}- bozonima u slaboj interakciji ostvarili su [[Šeldon Li Glešo]], [[Abdus Salam]] i [[Stiven Vajnberg]], za šta su dobili [[Nobelova nagrada|Nobelovu nagradu za fiziku]] [[1979]]. godine.<ref name="Glashow">[http://nobelprize.org/nobel_prizes/physics/laureates/1979/glashow-lecture.html Sheldon Glashow Nobel lecture], delivered 8 December 1979.</ref><ref name="Salam">[http://nobelprize.org/nobel_prizes/physics/laureates/1979/salam-lecture.html Abdus Salam Nobel lecture], delivered 8 December 1979.</ref><ref name="Weinberg">[http://nobelprize.org/nobel_prizes/physics/laureates/1979/weinberg-lecture.html Steven Weinberg Nobel lecture], delivered 8 December 1979.</ref>
Važnim problemom kvantne teorije polja javlja se uključivanje u jedinstvenu šemu kalibracije i jake interakcije. Ipak ključne posledice tih teorija, kao što je [[raspad protona]] još uvek nisu otkriveni eksperimentalno.<ref>Glava 14 v {{Cite book
|last=Hughes
|first=I. S.
|title=Elementary particles
|edition=2nd
|publisher=Cambridge University Press
|year=1985|isbn=978-0-521-26092-3
}} {{en}}</ref>
 
== Udeo fotona u masi sistema ==
{{Poseban članak|Relativistička masa}}
 
[[Energija]] sistema koji emituje foton se smanjuje za vrednost <math>~E</math> jednaku energiji tih fotona. Kao rezultat [[masa]] sistema se smanjuje za vrednost <math>~{E}/{c^2}</math>. Analogno masa sistema koji apsorbuje foton biva uvećana za istu vrednost.<ref>Razdel 10.1 v {{Cite book
|last=Dunlap
|first=R.A.
|title=An Introduction to the Physics of Nuclei and Particles
|publisher=Brooks/Cole
|year=2004|isbn=978-0-534-39294-9
}} {{en}}</ref>
 
Ova koncepcija koristi ključne principe [[kvantna elektrodinamika|kvantne elektrodinamike]]. U toj teoriji masa [[elektron]]a (i uopšte svih [[lepton]]a) se menja sa apsorpcijom virtuelnih fotona. Sličan metod u razumevanju daje objašnjenje tih činjenica kao anomalija [[dipolni moment|dipolnog momenta]] leptona i supertankih struktura leptonskih dubleta.{{sfn|Itzykson|Zuber|1980|pp=}}
 
Fotoni zadovoljavaju uslov [[tenzor energije-impulsa|tenzora energije-impulsa]] i zato interaguju [[gravitacija|gravitaciono]] sa drugim objektima u saglasnosti sa [[Opšta teorija relativnosti|opštom teorijom relativnosti]]. Njihove obično pravolinijske [[putanja|trajektorije]] mogu se kriviti zbog krivljenja [[prostor-vreme]]na. U tim uslovima se posmatra tzv. [[gravitacioni crveni pomak]]. To je svojstveno ne samo pojedinačnim fotonima, u potpunosti se može primeniti na klasične [[elektromagnetsko zračenje|elektromagnetne talase]] u celini.<ref>Razdelы 9.1 (gravitacioni doprinos fotona) i 10.5 (uticaj gravitacije na svetlost) v {{Cite book
|last=Stephani
|first=H.
|last2=Stewart
|first2=J.
|title=General Relativity: An Introduction to the Theory of Gravitational Field|isbn=978-0-521-37941-0
|publisher=Cambridge University Press
|year=1990
}} {{en}}</ref>
 
== Fotoni u supstancijalnoj sredini ==
{{Poseban članak|Indeks prelamanja|Fotohemija}}
 
Svetlost se u providnoj sredini prostire sa brzinom manjom od <math>~c</math> ([[brzina svetlosti]] u [[vakuum]]u). Na primer fotonima koji se mnogo puta sudaraju na putu od [[Sunce|Sunčevog jezgra]] koje emituje energiju može biti potrebno oko milion godina za dostizanje površine Sunca.<ref>
{{Cite book
|title=Through the Eyes of Hubble: Birth, Life and Violent Death of Stars
| first = R.
|last=Naeye
|publisher=CRC Press
|year=1998
|isbn=978-0-7503-0484-9|url=http://books.google.com/books?id=06_9B7S_q_YC&pg=PA16&dq=million-year+surface+sun+photon&as_brr=3&ei=gYsyR6iELpLgtgOkttmvAQ&sig=70D3g1ajnoVyvnoY1qBAIV0yIf4| oclc = 40180195
}} {{en}}</ref>
Ipak pri kretanju u otvorenom [[kosmos]]u isti fotoni dolaze do [[Zemlja|Zemlje]] svega za 8,3 minuta. Veličina koja karakteriše smanjenje brzine svetlosti naziva se [[indeks prelamanja]] sredine.
 
Usporavanje se može objasniti na sledeći način. Pod dejstvom [[električno polje|električnog polja]] svetlosni talasi [[valentni elektron]]i atoma sredine počinju da vrše [[prinudne oscilacije|prinudne]] [[harmonijske oscilacije]]. Oscilujući elektroni počinju sa određenim zakašnjenjem da stvaraju sekundarne talase iste frekvencije kao i upadne svetlosti koji [[Interferencija|interferiraju]] sa prvobitnim talasom usporavajući ga<ref>{{Cite book
|author = Касьянов, В. А.
|title = Физика 11 класс
|number = 3-е изд
|location = М.
|publisher=Дрофа
|year = 2003|pages = 228-229|pages = 416|isbn = 5-7107-7002-7
}}</ref>
Kod korpuskularnog modela usporavanje može biti umesto toga objašnjeno pomeranjem fotona sa kvantnim poremećajima u supstanci ([[kvazičestica]]ma, sličnim [[fonon]]ima i [[eksiton]]ima) sa obrazovanjem [[polariton]]a. Takav polariton ima [[efektivnu masu]] različitu od nule, zbog čega se ne može kretati brzinom <math>~c</math>. Efekat interakcije fotona sa drugim kvazičesticama može biti posmatran paralelno sa [[Ramanov efekat|Ramanovim efektom]] i [[rasejanje Mandeljštam — Briljjuena|rasejanjem Mandeljštama-Briljjuena]].<ref>{{Cite book
|last=Patterson| first=J.D.
|last2=Bailey| first2=B.C.
|title=Solid-State Physics: Introduction to the Theory
|publisher=[[Springer Science+Business Media|Springer]]
|year=2007
|isbn=978-3-540-24115-7
}} {{en}}</ref>
 
Analogno fotoni mogu da se posmatraju kao čestice koje se uvek kreću sa brzinom svetlosti <math>~c</math>, čak i kroz supstancijalnu sredinu, ali pritom podležu pomeranju faze zbog interakcije vzaimodeйstviя s atomima koji im menjaju talasnu dužinu i impuls, ali ne i brzinu.<ref>Ch 4 in {{Cite book
|last=Hecht| first=Eugene
|title=Optics
|publisher=Addison Wesley
|year=2001|isbn=978-0-8053-8566-3
}} {{en}}</ref>
[[Talasni snop]]ovi sostavljeni od tih fotona prostiru se brzinom manjom od <math>~c</math>. Sa te tačke gledišta fotoni su kao „goli“, zbog čega se rasejavaju na atomima, a njihova faza menja. Tada u prethodno opisanoj predstavi fotoni postaju „odeveni“ putem interakcije sa supstancijalnom sredinom i prostiru bez rasejanja i pomeranja faze, ali sa manjom brzinom.
 
U zavisnosti ot frekvencije svetlost se prostire kroz supstancijalnu sredinu različitim brzinama. Ta pojava se u [[optika|optici]] naziva [[Disperzija|disperzijom]]. Pri stvaranju određenih uslova može se postići to da brzina svetlosti u nekoj sredini postane izrazito mala. Fotoni takođe mogu biti apsorbovani [[atomsko jezgro|jezgrom atoma]], [[atom]]ima ili [[molekul]]ima, inicirajući tako prelaze na njihovim energetskim nivoima. Ilustrativan je primer vezan za apsorpciju fotona u pigmentu očnih štapića [[rodopsin]]u, u čiji sastav ulazi retinal, sličan [[retinol]]u ([[retinol|vitamina A]]), odgovornih za [[ljudski vid]], kao što je utvrđeno [[1958]]. godine američkim [[biohemija|biohemičarom]] i nobelovcem [[Džordž Vajld|Džordžom Vajldom]] i njegovim saradnicima.<ref>{{cite web
| datepublished = 2001-05-04
| url = http://n-t.ru/nl/mf/wald.htm
| title = УОЛД (Wald), Джордж
| publisher = Электронная библиотека «Наука и техника»
| accessdate = 5. 4. 2009.
}}</ref> Apsorpcija fotona molekulom rodopsina izaziva reakciju prelaska u izomerni trans-oblik, što dovodi do razlaganja rodopsina. Do pobuđivanja očnog nerva pri fotolitičkom razlaganju rodopsina dolazi na račun promene jonskog transporta u fotoreceptoru. Na taj način u saglasnosti sa drugim [[fiziologija|fiziološkim]] procesima, energija fotona prelazi u [[nervni impuls]].<ref>{{cite web
| author = И. Б. Федорович
| url = http://bse.sci-lib.com/article097361.html
| title = Родопсин
| publisher = [[Большая советская энциклопедия]]
| accessdate = 31. 5. 2009.
}}</ref>
Apsorpcija fotona može izazvati razaranje hemijskih veza kao pri [[fotoliza|fotolizi]]. Takvi procesi se proučavaju u [[fotohemija|fotohemiji]].<ref>Razdel 11-5&nbsp;°C v {{Cite book
|last=Pine
|first=S. H.
|last2=Hendrickson
|first2=J. B.
|last3=Cram
|first3=D. J.
|last4=Hammond
|first4=G. S.
|title=Organic Chemistry
|edition=4th
|publisher=McGraw-Hill
|year=1980|isbn=978-0-07-050115-7
}} {{en}}</ref><ref>Nobelevskaя lekciя [[Džordž Vajld]], 12 dekabrя 1967 goda [http://nobelprize.org/nobel_prizes/medicine/laureates/1967/wald-lecture.html The Molecular Basis of Visual Excitation] {{en}}.</ref>
 
== Tehnološka primena ==
 
{{Poseban članak|Laser|Laserska tehnologija|Spektralna analiza}}
 
Postoji mnogo tehničkih uređaja koji na neki način koriste fotone u svom funkcionisanju. Dalje su radi ilustracije navedeni neki od njih.
 
[[Datoteka:Laser DSC09088.JPG|300px|thumb|left|[[Helijum-neonski laser]]. Svetlosni zrak u centru nastaje usled [[električno pražnjenje|električnog pražnjenja]] koje izaziva osvetljenost. [[Svetlosni zrak|Zrak]] se projektuje na ekran desno u vidu svetleće crvene tačke.]]
 
Važan tehnički uređaj koji koristi fotone je [[laser]]. Njegov rad zasnovan je na pojavi [[prinudno zračenje|prinudnog zračenja]], koje je već opisano. Laseri se primenjuju u mnogim tehnološkim oblastima. Mnogi tehnološki procesi kao što su [[varenje]], [[sečenje]] i [[lemljenje]] metala se ostvaruju gasnim laserima velike vrednosti [[snaga|srednje snage]]. U [[metalurgija|metalurgiji]] oni omogućavaju dobijanje najčistijih metala. Superstabilni laseri predstavaju osnovu optičkih standarda frekvencije laserskih [[seizmograf]]a, [[graviometr]]a i drugih preciznih fizičkih instrumenata. Laseri sa promenljivom frekvencijom (na primer [[laser na boje]]) su proizveli revoluciju u [[spektroskopija|spektroskopiji]], značajno povećavši [[ugaona rezolucija|ugaonu rezoluciju]] i osetljivost metode čak do posmatranja [[elektromagnetski spektar|spektra]] pojedinačnih atoma.<ref>Fizičeskiй эnciklopedičeskiй slovarь. Gl. red. A. M. Prohorov. Red. kol. D. M. Alekseev, A. M. Bonč-Bruevič, A. S. Borovik-Romanov i dr. M.: Sov. Эnciklopediя, 1984. — 340 s.</ref> Laseri se takođe koriste kao skalperi,<ref>{{cite news
|title=Российские медики теперь могут делать операции без крови
|url=http://www.rian.ru/video/20090326/166088893.html
|publisher=[[РИА «Новости»]]
| date = 26. 3. 2009.
| accessdate = 10. 4. 2009.
}}</ref>
pri lečenju očnih i kožnih bolesti. [[Laserska lokacija]] pogodovala je povećanju tačnosti [[kosmička navigacija|kosmičke navigacije]], rasširila je znanja o atmosferi i strukturi površina planeta, dozvolila merenje brzine rotacije [[Venera|Venere]] i [[Merkur]]a, precizirala karakteristike kretanja Meseca i planete Venere u poređenju sa astronomskim podacima. Korišćenjem lasera pokušava se rešiti problem [[kontrolisana termonuklearna sinteza|kontrolisane termonuklearne sinteze]].<ref>{{cite web
|url=http://www.astronet.ru/db/msg/1175822/page4.html
|title=Заключение. Области применения лазеров
|author=М. Ф. Сэм
|publisher=Astronet.ru
|accessdate = 6. 2. 2009.}}</ref> Laseri se široko koriste u svakodnevnom životu ([[laserski štampač]], [[DVD]], [[laserski pokazivač]] i dr.).
 
Emisija i apsorpcija fotona supstancom koristi se u [[spektralna analiza|spektralnoj analizi]]. [[Atom]]i svakog [[hemijski element|hemijskog elementa]] imaju strogo određene [[rezonantna frekvencija|rezonantne frekvencije]], što rezultuje time da se baš na tim frekvencijama vrši emisija ili apsorpcija svetlosti. To dovodi do toga da spektar emisije i apsorpcije atoma i od njih sastavljenih molekula bude individualan, slično [[otisak prsta|otisku prsta]] kod čoveka.
[[Datoteka:Emission spectrum-Fe.png|centar|thumb|500px|<center>[[Emisioni spektar]] [[gvožđe|gvožđa]]</center>.]]{{clearleft}}
Po metodama koje se koriste razlikuju se nekoliko tipova spektralne analize:<ref>{{Cite book
|author = А. А. Бабушкин, П. А. Бажулин, Ф. А. Королев, Л. В. Левшин, В. К. Прокофьев, А. Р. Стриганов
|title = Методы спектрального анализа
|location = М.
|publisher = Издательство Московского университета
|year = 1962|pages = 6-20|pages = 510
}}</ref>
# '''[[Emisioni spektar|Emisiona]]''' koja koristi spektre emisije atoma ili (ređe) molekula. Taj oblik analize zahteva [[sagorevanje]] neke probne količine u plamenu gasnog [[plamenik]]a, [[električni luke|električnom luku]] [[jednosmerna struja|jednosmerne]] ili [[naizmenična struja|naizmenične struje]] ili [[električna varnica|električnoj varnici]]. Posebnim slučajem emisione analize javlja se [[luminscentna analiza]].
# '''[[Apsorbciona]]''' koristi spektar apsorpcije, uglavnom molekula, ali može biti primenjena i na atome. Ovde se uzorak u celinom perevodi u gasovito stnje i kroz njega se propušta svetlost [[kontinualni spektar|kontinualnog spektra]]. Na fonu kontinualnog spektra se posmatra spektar apsorpcije isparene supstance.
# '''[[Rentgenska spektralna analiza|Rentgenska]]''' koristi rentgenski spektar atoma, a takođe i difrakciju [[rendgenski zraci|rentgenskih zraka]] pri pri njihovom prolasku kroz objekat čija se struktura želi istražiti. Najveća prednost metode je to da rentgenski spektri sadrže manje linija što olakšava proučavanje strukture uzorka. Među nedostacima se ističe viskoka osetljivost i složenost pribora.
U kvalitativnoj spektralnoj analizi određuje se samo sastav uzorka bez ulaženja u kvantitivne odnose među komponentama. Poslednji problem se rešava u kvantitativnoj spektralnoj analizi na osnovu toga da intenzitet linija u spektru zavisi od sadržaja odgovarajuće supstance u posmatranom uzorku.<ref>{{cite web
|url=http://www.chemport.ru/chemical_encyclopedia_article_3517.html
|title=Спектральный анализ
|publisher=Chemport.ru
|accessdate = 8. 2. 2009.}}</ref> Na taj način se po [[elektromagnetski spektar|spektru]] supstance može odrediti njen [[hemijska struktura|hemijski sastav]]. Spektralna analiza je metoda prilično korišćena u [[analitička hemija|analitičkoj hemiji]], [[astrofizika|astrofizici]], metalurgiji, [[mašinstvo|mašinstvu]], [[geologija|geologiji]] i drugim naučnim disciplinama.
 
Rad mnogih [[generator slučajnih brojeva|generatora slučajnih brojeva]] zasnovan je na određivanju položaja pojedinih fotona. Uprošćen princip rada jednog od njih se svodi na sledeće. Da bi se generisao svaki [[Bit (računarstvo)|bit]] slučajnim redosledom, foton se usmerava na delilac zraka. Za svaki foton postoji svega dve jednako verovatne mogućnosti: proći kroz delilac zraka ili ne. U zavisnosti od toga svaki sledeći bit dobija vrednost 0 ili 1.<ref>
{{Cite journal
|first=T.
|last=Jennewein
|first2=U.
|last2=Achleitner
|first3=G.
|last3=Weihs
|first4=H.
|last4=Weinfurter
|first5=A.
|last5=Zeilinger
|title=A fast and compact quantum random number generator
|doi=10.1063/1.1150518
|journal=[[Review of Scientific Instruments]]
|volume=71|pages=1675-1680
|year=2000}} {{en}}</ref><ref>
{{Cite journal
|first=A.
|last=Stefanov
|first2=N.
|last2=Gisin
|first3=O.
|last3=Guinnard
|first4=L.
|last4=Guinnard
|first5=H.
|last5=Zbiden
|title=Optical quantum random number generator
|journal=Journal of Modern Optics
|volume=47|pages=595-598
|year=2000
|doi=10.1080/095003400147908
}} {{en}}</ref>
 
== Poslednja istraživanja ==
{{Poseban članak|Kvantna optika}}
 
Danas se smatra da su svojstva fotona dobro istražena sa teorijskog aspekta. [[Standardni model]] razmatra fotone kao bozone sa spinom jednakim 1, sa masom mirovanja<ref>Smatra se da foton „nema masu“, ali potrebno je shvatiti da to obuhvata samo masu mirovanja. Ona je zaista jednaka nuli, ali [[relativistička masa]] kod fotona postoji. Tome između ostalog ide u prilog činjenica da procesu oslobađanja [[Solarna energija|Sunčeve energije]] u vidu fotona masa zvezde biva umanjena ({{Cite book
|author = Касьянов, В. А.
|title = Физика 10 класс
|number = 7-е изд
|location = М.
|publisher=Дрофа
|year = 2005|pages = 207-210|pages = 412|isbn = 5-7107-9524-0
}}) Baš zbog nedostatka mase mirovanja kod fotona on je prinuđen da se kreće sa maksimalnom mogućom brzinom − [[brzina svetlosti|brzinom svetlosti u vakuumu]]. On može postojati samo u takvom kretanju. Bilo koje njegovo zaustavljanje je ekvivalentno njegovoj apsorpciji.</ref> i naelektrisanjem jednakom nuli (poslednje sledi između ostalog iz lokalne simmetrije i ogleda iz oblasti elektromagnetne interakcije). Ipak fizičari nastavljaju da traže nesuglasice među eksperimentima i Standardnim modelom. Neprestano se povećava preciznost eksperimenata u kojim se određuje masa i naelektrisanje fotona. Pronalazak makar malog odstupanja naneo bi ozbiljan udar Standardnom modelu. Svi eksperimenti učinjeni do sada ipak pokazuju da fotoni nemaju ni naelektrisanje, ni masu mirovanja<ref>{{cite journal
| last = G. Spavieri and M. Rodriguez
|year=2007
|title=Photon mass and quantum effects of the Aharonov-Bohm type
| journal = [[Physical Review A]]
| volume = 75|pages=052113
| doi = 10.1103/PhysRevA.75.052113
}} {{en}}</ref><ref>{{cite journal
| last = Goldhaber
| first = A. S.
|year=1971
|title=Terrestrial and Extraterrestrial Limits on The Photon Mass
| journal = [[Reviews of Modern Physics]]
| volume = 43|pages=277-296
| doi = 10.1103/RevModPhys.43.277
}} {{en}}</ref><ref>{{cite journal
| last = Fischbach
| first = E.
| coauthors = Kloor, H.; Langel, R.A.; Lui, A.T.Y.; Peredo, M.
|year=1994
|title=New Geomagnetic Limits on the Photon Mass and on Long-Range Forces Coexisting with Electromagnetism
| journal = [[Physical Review Letters]]
| volume = 73|pages=514-517
| doi = 10.1103/PhysRevLett.73.514
}} {{en}}</ref><ref>[http://pdg.lbl.gov/2005/tables/gxxx.pdf Official particle table for gauge and Higgs bosons] S. Eidelman ''et al.'' (Particle Data Group) ''Physics Letters B'' '''592''', 1 (2004)</ref><ref>{{cite journal
| last = Davis
| first = L.
| coauthors = Goldhaber, A.S.; Nieto, M.M.
|year=1975
|title=Limit on Photon Mass Deduced from Pioneer-10 Observations of Jupiter's Magnetic Field
| journal = [[Physical Review Letters]]
| volume = 35|pages=1402-1405
| doi = 10.1103/PhysRevLett.35.1402
}} {{en}}</ref><ref>{{cite journal
| last = Luo
| first = J.
| coauthors = Shao, C.G.; Liu, Z.Z.; Hu, Z.K.
|year=1999
|title=Determination of the limit of photon mass and cosmic magnetic vector with rotating torsion balance
| journal = [[Physical Review A]]
| volume = 270|pages=288-292
}} {{en icon}}</ref><ref>{{cite journal
| last = Schaeffer
| first = B.E.
|year=1999
|title=Severe limits on variations of the speed of light with frequency
| journal = [[Physical Review Letters]]
| volume = 82|pages=4964-4966
| doi = 10.1103/PhysRevLett.82.4964
}} {{en}}</ref><ref>{{cite journal
| last = Luo
| first = J.
| coauthors = Tu, L.C.; Hu, Z.K.; Luan, E.J.
|year=2003
|title=New experimental limit on the photon rest mass with a rotating torsion balance
| journal = [[Physical Review Letters]]
| volume = 90|pages=Art. No. 081801 | nopp = true
| doi = 10.1103/PhysRevLett.90.081801
}} {{en}}</ref><ref>{{cite journal
| last = Williams
| first = E.R.
| coauthors = Faller, J.E.; Hill, H.A.
|year=1971
|title=New Experimental Test of Coulomb's Law: A Laboratory Upper Limit on the Photon Rest Mass
| journal = [[Physical Review Letters]]
| volume = 26|pages=721-724
| doi = 10.1103/PhysRevLett.26.721
}} {{en}}</ref><ref>{{cite journal
| last = Lakes
| first = R.
|year=1998
|title=Experimental Limits on the Photon Mass and Cosmic Magnetic Vector Potential
| journal = [[Physical Review Letters]]
| volume = 80 |pages=1826
| doi = 10.1103/PhysRevLett.80.1826
}} {{en}}</ref><ref>[http://pdg.lbl.gov/2006/listings/s000.pdf 2006 PDG listing for photon] W.-M. Yao ''et al.'' (Particle Data Group) ''Journal of Physics G'' '''33''', 1 (2006).</ref><ref>{{cite journal
| last = Adelberger
| first = E.
| coauthors = Dvali, G.; Gruzinov, A.
|title=Photon Mass Bound Destroyed by Vortices
| journal = [[Physical Review Letters]]
| volume = 98|pages=Art. No. 010402
| nopp = true
| doi = 10.1103/PhysRevLett.98.010402
|year=2007}}</ref>
Najveća tačnost sa kotjom je izmereno naelektrisanje fotona je {{nowrap|5×10<sup>−52</sup> [[kulon (jedinica)|-{S}-]]}} (ili {{nowrap|3×10<sup>−33</sup> [[elementarno naeletrisanje|e]]}}); dok je za masu {{nowrap|1,1×10<sup>−52</sup> [[kilogram|-{kg}-]]}} ({{nowrap|6×10<sup>−17</sup> [[elektronvolt|-{eV}-]]/[[brzina svetlosti|-{c}-]]<sup>2</sup>}} ili {{nowrap|1×10<sup>−22</sup> [[masa elektrona|''m''<sub>e</sub>]]}}).<ref name="Particle_table">[http://pdg.lbl.gov/2005/tables/gxxx.pdf Official particle table for gauge and Higgs bosons], Pristupljeno 24. 10. 2006.</ref>
 
Mnoga savremena istraživanja posvećena su primeni fotona u oblasti [[kvantna optika|kvantne optike]]. Fotoni se čine odgovarajućim česticama za stvaranje [[kvantni računar|kvantnih kompjutera]]. [[kvantna povezanost]] i [[kvantna teleportacija]] takođe spadaju u prioritetne pravce savremenih istraživanja.<ref>{{cite web
| author = Алексей Паевский
| url = http://www.gazeta.ru/science/2006/10/10_a_912253.shtml?letters
| title = Телепортация вышла на поток
| publisher = Gazeta.ru
| publisher = Gazeta.ru
| accessdate = 19. 4. 2009.
}}</ref>
Osim toga traje proučavanje [[nelinearna optika|nelinearnih optičkih procesa i sistema]]. Ipak takve pojave ne iziskuju korišćenje fotona u njihovom objašnjavanju. One često mogu biti modelski prikazane putem posmatranja atoma kao nelinearnih oscilatora. [[Nelinearna optika|Nelinearno optički]] proces [[spontano parametarsko rasejanje|spontanog parametarskog rasejanja]] često se koristi u cilju stvaranja [[kvantna povezanost|stanja kvantne povezanosti]] fotona<ref>{{Cite book
|author = Под. ред. Д. Боумейстера, А. Экерта, А. Цайлингера
|title = Физика квантовой информации
|location = М.
|publisher=Постмаркет
|year = 2002|pages = 79-85
}}</ref>. Na kraju, fotoni se koriste u optičkoj komunikaciji, uključujući i [[kvantna kriptografija|kvantnu kriptografiju]].<ref>{{cite web
| author = Мария Чехова
| url = http://www.krugosvet.ru/enc/nauka_i_tehnika/fizika/KVANTOVAYA_OPTIKA.html
| title = Квантовая оптика
| publisher = [[Кругосвет]]
| accessdate = 19. 4. 2009.
}}</ref>
 
== Reference ==
{{Refbegin|2}}
 
[[Kategorija:Fizika]]