Gravitacija – razlika između verzija

Uklonjeni sadržaj Dodani sadržaj
Red 119:
Newtonova ili, kako se danas naziva, klasična teorija gravitacije dominirala je znanošću sve do početka 20. stoljeća i dala niz izvanrednih rezultata, osobito u nebeskoj mehanici. Tako su na primjer [[Neptun]] i [[Pluton]], dva najudaljenija planeta našega sustava, pronađena na osnovi teoretskih proračuna. U Newtonovoj teoriji gravitacije kao osnovni postulati postoje apsolutni prostor i apsolutno vrijeme. Međutim, razradivši (1905.) svoju teoriju relativnosti, [[Albert Einstein]] prvi je uvidio da je pojam apsolutnoga vremena, koji je na prvi pogled potpuno logičan, zapravo neodrživ. Da bi se usporedilo vrijeme između dvaju promatrača u različitim sustavima referencije, potrebno je poslužiti se nekim signalom. Jedini je fizikalno mogući način upotreba svjetlosnoga signala. No kako je [[brzina svjetlosti]] konstantna i neovisna o sustavu promatranja, Einstein je pokazao da vrijeme mora zavisiti o sustavu. Vrijeme je, a prema tome i pojam istodobnosti dvaju događaja, relativno. Tretirajući vrijeme kao varijablu ekvivalentnu prostornim varijablama, Einstein je, slijedeći put što ga je pokazao [[Hermann Minkowski]], izgradio pojam četverodimenzionalnoga prostora – [[Prostorvrijeme|prostorno vremenskoga kontinuuma]]. Geometriju takva prostora određuje [[materija]], a gravitacija je samo posljedica geometrije fizikalnoga prostora. Drugim riječima, gravitacija je samo posljedica činjenice da kontinuum prostorvrijeme nije ravan, nego zakrivljen. Čestica materije ubačena u svemir ne bi se gibala po pravcu, kako to traže Newtonove jednadžbe, nego po tzv. geodetskoj liniji, koja fizički predstavlja (vremenski) najkraću stazu između bilo kojih dviju točaka u svemiru. Zrake [[svjetlost]]i također se ne šire pravocrtno, nego se i one savijaju u gravitacijskom polju ([[gravitacijske leće]]).
 
=== Četiri osnovneOsnovne sile ===
{{Glavni|FundamentalneOsnovne interakcijesile}}
 
Od četiriju poznatih osnovnih sila u prirodi, gravitacija je najslabija, pa je u području [[atom]]a i [[molekula]] potpuno zanemariva prema [[Elektromagnetska sila|elektromagnetskim]] i [[Nuklearna sila|nuklearnim silama]]. U [[svemir]]skim prostranstvima, gdje međusobno djeluju velike nakupine [[masa]], [[Međuzvjezdana tvar|međuzvjezdani plinovi]], [[zvijezde]], [[galaktike]], gravitacija igra važnu ulogu. Astronomska otkrića [[pulsar]]a i [[kvazar]]a i teorije o razvoju zvijezda stavljaju teoriju gravitacije pred nove probleme, kao što su pitanje stalnosti gravitacijske konstante tijekom vremena, mehanizam gravitacijskoga kolapsa koji uzrokuje energetsku degeneraciju zvijezda. Kod gravitacijskoga kolapsa, sile zvjezdane gravitacije posve nadjačaju sile pritiska zračenja i zvijezda se sve više sažimlje. Nakon porasta gravitacije iznad neke veličine, zvijezda postane za promatrača nevidljivom ([[crna rupa]]), jer [[kvant]]i zračenja više ne mogu napustiti zvijezdu. Za objašnjenje tih pojava može se pokazati nužnim da se u gravitacijskoj teoriji provede kvantizacija ([[kvantna mehanika]]). Energija gravitacijskoga polja bila bi kvantizirana i širila bi se kroz polje u gravitacijskim valovima. Kvant gravitacijskoga polja zove se [[graviton]].