Gravitacija – razlika između verzija

Uklonjeni sadržaj Dodani sadržaj
struktura
Red 85:
[[Carl Friedrich Gauss|Gaussov]] je zakon u biti isti Newtonovom zakonu univerzalne gravitacije. Premda je fizički istovrijedan Newtonovom, brojne su situacije gdje Gaussov zakon gravitacije nudi pogodniji i jednostavniji način izračunavanja nego Newtonov.
 
=== Einsteinova teorija gravitacije ===
{{Glavni|Opća teorija relativnosti}}
 
Einsteinova teorija gravitacije prelazi u prvom približenju (aproksimaciji) u [[Klasična mehanika|klasičnu teoriju]], a kako su posljedice [[Teorija relativnosti|teorije relativnosti]] vrlo malene, to je [[pokus]]om teško dokazati njezinu ispravnost.<ref>{{cite web|url=http://www.black-holes.org/relativity6.html |title=Gravity and Warped Spacetime |publisher=black-holes.org |accessdate=2010-10-16}}</ref><ref>{{cite web |title=Lecture 20: Black Holes—The Einstein Equivalence Principle |author=Dmitri Pogosyan |url=http://www.ualberta.ca/~pogosyan/teaching/ASTRO_122/lect20/lecture20.html |publisher=University of Alberta |accessdate=2011-10-14}}</ref> Dosadašnji eksperimentalno dobiveni podatci, kao npr. oni o odstupanju stvarne putanje Merkura oko Sunca od putanje koju daje klasična teorija, ili pak oni o savijanju zraka svjetlosti u gravitacijskom polju Sunca ([[Crveni pomak|pomak prema crvenomu dijelu spektra]]), u skladu su s Einsteinovom teorijom gravitacije. Iako je ta teorija gravitacije skladna, ona je ipak složena, pa je bilo više pokušaja da se nađu jednostavniji principi na kojima bi se mogla izgraditi teorija gravitacije. Najviše uspjeha postigli su [[George David Birkhoff]] i [[Edward Arthur Milne]]. U novije doba također se mnogo radi na tzv. '''unificiranoj teoriji polja''', kojoj je i Einstein posvetio dugi niz godina istraživanja. Ta teorija trebala bi istim jednadžbama obuhvatiti i gravitacijsko i [[elektromagnetsko polje]]. Dosadašnji pokušaji još nisu dali potpuno zadovoljavajuće rezultate.
 
== IzvoriTeorija ==
=== Ubrzanje zemljine sile teže ===
{{Glavni|Ubrzanje zemljine sile teže}}
Linija 96 ⟶ 102:
 
<math> G = 6,67259 \times 10^{-11} \ {\rm N}\, {\rm (m/kg)^2}</math>
 
=== Brzina gravitacije ===
 
Utjecaj je gravitacije u Newtonovoj teoriji gravitacije trenutačan. Međutim u [[posebna teorija relativnosti|posebnoj teoriji relativnosti]] pojam istovremenosti gubi smisao, a i nemoguće je slati informacije brže od svjetlosti jer bi to dovelo do paradoksa, pa se prema [[Opća teorija relativnosti|općoj teoriji relativnosti]] utjecaj prostorom širi [[Brzina svjetlosti|brzinom svjetlosti]]. Eksperimentalno je potvrđeno da je [[brzina gravitacije]] jednaka [[brzina svjetlosti|brzini svjetlosti]] unutar eksperimentalne pogreške od 1&nbsp;%. <ref> {{cite journal | author = C. Will | title = The confrontation between general relativity and experiment | year = 2001 | journal = Living Rev. Relativity | volume = 4 | url = http://www.livingreviews.org/lrr-2001-4 | pages = 4}}</ref>
 
=== Gravitacijsko polje ===
[[Gravitacijsko polje]] je [[potencijalno polje|potencijalno]] [[vektorsko polje]] koje se za svaku točku definira kao sila gravitacije na točkasto tijelo u toj točki podijeljena masom tog tijela. Gravitacijsko polje oko mase ''m''<sub>1</sub> je dano s:
 
:<math>\mathbf{g}(\mathbf{r})=\frac{\mathbf{F}_g}{m_2}=G\frac{m_1}{r^3}\mathbf{r}</math>
 
Ova veličina govori kojom silom po jedinici gravitacijsko polje privlači tijelo u nekoj točki prostora određenoj radijvektorom '''r'''. [[Mjerna jedinica]] je njutn po kilogramu (N/kg), a lako se može pokazati da je njutn po kilogramu isto što i [[metar u sekundi na kvadrat]] (m/s<sup>2</sup>), što je mjerna jedinica [[ubrzanje|ubrzanja]]. [[Ubrzanje Zemljine sile teže|Gravitacijska akceleracija Zemlje]] iznosi prosječno 9,80665 m/s<sup>2</sup> na površini Zemlje. Stoga je jakost gravitacijskog polja u nekoj točki prostora jednaka gravitacijskom ubrzanju u toj točki. To je zbog činjenice da su teška i troma masa linearno razmjerne. Ta činjenica se naziva [[princip ekvivalencije|principom ekvivalencije]].
 
=== Nebeska mehanika ===
Linija 101 ⟶ 118:
 
Newtonova ili, kako se danas naziva, klasična teorija gravitacije dominirala je znanošću sve do početka 20. stoljeća i dala niz izvanrednih rezultata, osobito u nebeskoj mehanici. Tako su na primjer [[Neptun]] i [[Pluton]], dva najudaljenija planeta našega sustava, pronađena na osnovi teoretskih proračuna. U Newtonovoj teoriji gravitacije kao osnovni postulati postoje apsolutni prostor i apsolutno vrijeme. Međutim, razradivši (1905.) svoju teoriju relativnosti, [[Albert Einstein]] prvi je uvidio da je pojam apsolutnoga vremena, koji je na prvi pogled potpuno logičan, zapravo neodrživ. Da bi se usporedilo vrijeme između dvaju promatrača u različitim sustavima referencije, potrebno je poslužiti se nekim signalom. Jedini je fizikalno mogući način upotreba svjetlosnoga signala. No kako je [[brzina svjetlosti]] konstantna i neovisna o sustavu promatranja, Einstein je pokazao da vrijeme mora zavisiti o sustavu. Vrijeme je, a prema tome i pojam istodobnosti dvaju događaja, relativno. Tretirajući vrijeme kao varijablu ekvivalentnu prostornim varijablama, Einstein je, slijedeći put što ga je pokazao [[Hermann Minkowski]], izgradio pojam četverodimenzionalnoga prostora – [[Prostorvrijeme|prostorno vremenskoga kontinuuma]]. Geometriju takva prostora određuje [[materija]], a gravitacija je samo posljedica geometrije fizikalnoga prostora. Drugim riječima, gravitacija je samo posljedica činjenice da kontinuum prostorvrijeme nije ravan, nego zakrivljen. Čestica materije ubačena u svemir ne bi se gibala po pravcu, kako to traže Newtonove jednadžbe, nego po tzv. geodetskoj liniji, koja fizički predstavlja (vremenski) najkraću stazu između bilo kojih dviju točaka u svemiru. Zrake [[svjetlost]]i također se ne šire pravocrtno, nego se i one savijaju u gravitacijskom polju ([[gravitacijske leće]]).
 
=== Einsteinova teorija gravitacije ===
{{Glavni|Opća teorija relativnosti}}
 
Einsteinova teorija gravitacije prelazi u prvom približenju (aproksimaciji) u [[Klasična mehanika|klasičnu teoriju]], a kako su posljedice [[Teorija relativnosti|teorije relativnosti]] vrlo malene, to je [[pokus]]om teško dokazati njezinu ispravnost.<ref>{{cite web|url=http://www.black-holes.org/relativity6.html |title=Gravity and Warped Spacetime |publisher=black-holes.org |accessdate=2010-10-16}}</ref><ref>{{cite web |title=Lecture 20: Black Holes—The Einstein Equivalence Principle |author=Dmitri Pogosyan |url=http://www.ualberta.ca/~pogosyan/teaching/ASTRO_122/lect20/lecture20.html |publisher=University of Alberta |accessdate=2011-10-14}}</ref> Dosadašnji eksperimentalno dobiveni podatci, kao npr. oni o odstupanju stvarne putanje Merkura oko Sunca od putanje koju daje klasična teorija, ili pak oni o savijanju zraka svjetlosti u gravitacijskom polju Sunca ([[Crveni pomak|pomak prema crvenomu dijelu spektra]]), u skladu su s Einsteinovom teorijom gravitacije. Iako je ta teorija gravitacije skladna, ona je ipak složena, pa je bilo više pokušaja da se nađu jednostavniji principi na kojima bi se mogla izgraditi teorija gravitacije. Najviše uspjeha postigli su [[George David Birkhoff]] i [[Edward Arthur Milne]]. U novije doba također se mnogo radi na tzv. '''unificiranoj teoriji polja''', kojoj je i Einstein posvetio dugi niz godina istraživanja. Ta teorija trebala bi istim jednadžbama obuhvatiti i gravitacijsko i [[elektromagnetsko polje]]. Dosadašnji pokušaji još nisu dali potpuno zadovoljavajuće rezultate.
 
=== Četiri osnovne sile ===
Linija 113 ⟶ 125:
 
Moderni pokusi usmjereni su na precizno određivanje izobličenja prostorno-vremenskoga kontinuuma koji Zemlja svojom gravitacijom uzrokuje i prema preciziranju, odnosno mogućem proširenju Einsteinove teorije gravitacije. U tu svrhu konstruiraju se [[satelit]]i (npr. gravitacijska sonda B) koji vrlo osjetljivim [[žiroskop]]ima, kojih je vlastito odstupanje manje od 10<sup>–11</sup> [[Stupanj (kut)|stupnja]] na [[sat]], mjere deformacije gravitacijskoga polja. Također se izvode pokusi međudjevovanja elektromagnetskog i gravitacijskog polja, zasjenjivanja gravitacije štitovima, pokušaji bilježenja gravitacijskoga zračenja itd. Svi ti pokusi daju početne rezultate, zasad nedovoljne za ozbiljniju teorijsku obradbu, ali oni pokazuju da će postojeće teorije trebati dopunjavati. Uostalom, sam Albert Einstein, govoreći o svojoj jednadžbi u kojoj je u općoj teoriji relativnosti obuhvaćena gravitacija, rekao je da je lijeva strana jednadžbe čvrsta kao stijena, ali da je desna pijesak od kojega nešto tek treba oblikovati.
 
== Brzina gravitacije ==
Utjecaj je gravitacije u Newtonovoj teoriji gravitacije trenutačan. Međutim u [[posebna teorija relativnosti|posebnoj teoriji relativnosti]] pojam istovremenosti gubi smisao, a i nemoguće je slati informacije brže od svjetlosti jer bi to dovelo do paradoksa, pa se prema [[Opća teorija relativnosti|općoj teoriji relativnosti]] utjecaj prostorom širi [[Brzina svjetlosti|brzinom svjetlosti]]. Eksperimentalno je potvrđeno da je [[brzina gravitacije]] jednaka [[brzina svjetlosti|brzini svjetlosti]] unutar eksperimentalne pogreške od 1&nbsp;%. <ref> {{cite journal | author = C. Will | title = The confrontation between general relativity and experiment | year = 2001 | journal = Living Rev. Relativity | volume = 4 | url = http://www.livingreviews.org/lrr-2001-4 | pages = 4}}</ref>
 
== Gravitacijsko polje ==
[[Gravitacijsko polje]] je [[potencijalno polje|potencijalno]] [[vektorsko polje]] koje se za svaku točku definira kao sila gravitacije na točkasto tijelo u toj točki podijeljena masom tog tijela. Gravitacijsko polje oko mase ''m''<sub>1</sub> je dano s:
 
:<math>\mathbf{g}(\mathbf{r})=\frac{\mathbf{F}_g}{m_2}=G\frac{m_1}{r^3}\mathbf{r}</math>
 
Ova veličina govori kojom silom po jedinici gravitacijsko polje privlači tijelo u nekoj točki prostora određenoj radijvektorom '''r'''. [[Mjerna jedinica]] je njutn po kilogramu (N/kg), a lako se može pokazati da je njutn po kilogramu isto što i [[metar u sekundi na kvadrat]] (m/s<sup>2</sup>), što je mjerna jedinica [[ubrzanje|ubrzanja]]. [[Ubrzanje Zemljine sile teže|Gravitacijska akceleracija Zemlje]] iznosi prosječno 9,80665 m/s<sup>2</sup> na površini Zemlje. Stoga je jakost gravitacijskog polja u nekoj točki prostora jednaka gravitacijskom ubrzanju u toj točki. To je zbog činjenice da su teška i troma masa linearno razmjerne. Ta činjenica se naziva [[princip ekvivalencije|principom ekvivalencije]].
 
== Gravitacija i kvantna mehanika ==
Linija 152 ⟶ 154:
* Definicija jakosti gravitacijskog polja se matematički može dobiti i na drugi način, uvrštavanjem jedinične mase u drugi [[Newtonovi zakoni gibanja|Newtonov zakon]].
* Ako neko tijelo promijeni položaj u prostoru, jakost njegovog gravitacijskog polja u proizvoljnoj točki prostora će se promijeniti u skladu s tim pomakom tek nakon onoliko vremena koliko je potrebno da svjetlost dođe od tijela do te točke.
 
== Poveznice ==
* [[Gravitacijski metar]]
* [[Gravitacijski potencijal]]
* [[Gravitacijski crveni pomak]]
 
== Izvori ==
{{izvori|2}}
 
== Literatura ==
Linija 182 ⟶ 176:
* ''Mizner Č., Torn K., Uiler Dž.'' Gravitaciя. — M.: Mir, 1977.
* ''Torn K.'' Černыe dыrы i skladki vremeni. Derzkoe nasledie Эйnšteйna. — M.: Gosudarstvennoe izdatelьstvo fiziko-matematičeskoй literaturы, 2009.
 
{{refend}}
 
== Izvori ==
{{izvori|2}}
 
== Poveznice ==
* [[Gravitacijski metar]]
* [[Gravitacijski potencijal]]
* [[Gravitacijski crveni pomak]]
 
== Vanjske veze ==