Tečno agregatno stanje – razlika između verzija

Uklonjeni sadržaj Dodani sadržaj
Red 85:
Tečnosti se ponekad koriste u mernim uređajima. [[Termometar|Termometri]]<ref>Middleton, W.E.K. (1966). ''A history of the thermometer and its use in meteorology''. Baltimore: Johns Hopkins Press. Reprinted ed. 2002, ISBN 0-8018-7153-0.</ref> često koriste [[termička dilatacija|termalnu ekspanziju]] tečnosti, kao što je [[živa]], u kombinaciji sa njenom sposobnosti da teče, za indiciranje temperature.<ref>T.D. McGee (1988) ''Principles and Methods of Temperature Measurement'' ISBN 0-471-62767-4</ref><ref>T.D. McGee (1988) ''Principles and Methods of Temperature Measurement'' page 3, ISBN 0-471-62767-4</ref> [[Manometar]] koristi težinu tečnosti kao indikator [[vazdušni pritisak|vazdušnog pritiska]].<ref>Bela G. Liptak [http://books.google.com/books?id=pPMursVsxlMC&pg=PA807 ’’Instrument engineers’ handbook: process control’’] CRC Press 1999 p. 807 ISBN 0-8493-1081-4</ref>
 
== Mehani;kaMehanička svojstva ==
=== Zapremina ===
QuantitiesKoličina oftečnosti liquidsse areobično commonlymeri measuredu in units ofjedinicama [[volumezapremina|zapremine]]. These includeOne theobuhvataju [[InternationalMeđunarodni Systemsistem of Unitsjedinica|SI]] unitjedinicu [[cubickubni metremetar]] (m<sup>3</sup>) andi itsnjegove divisionsdelove, ina particularposebno the cubickubni decimeter, morekoji commonlyse callednajčešće thenaziva [[litrelitar|litrom]] (1 dm<sup>3</sup> = 1 L = 0.001 m<sup>3</sup>), andi thekubni cubic centimetrecantimetar, alsokoji se callednaziva millilitremililitrom (1&nbsp;cm<sup>3</sup> = 1 mL = 0.001 L = 10<sup>−6</sup> m<sup>3</sup>).
 
[[Zapremina]] date količine tečnosti je fiksna na datoj [[temperatura|temperaturi]] i [[pritisak|pritisku]]. Tečnosti se generalno šire pri zagrevanju, i sakupljaju pri hlađenju. [[Voda]] između 0&nbsp;°C i 4&nbsp;°C je primetni izuzetak.
Quantities of liquids are commonly measured in units of [[volume]]. These include the [[International System of Units|SI]] unit [[cubic metre]] (m<sup>3</sup>) and its divisions, in particular the cubic decimeter, more commonly called the [[litre]] (1 dm<sup>3</sup> = 1 L = 0.001 m<sup>3</sup>), and the cubic centimetre, also called millilitre (1&nbsp;cm<sup>3</sup> = 1 mL = 0.001 L = 10<sup>−6</sup> m<sup>3</sup>).
 
LiquidsTečnosti haveimaju littlemalu [[compressibilitykompresibilnost]]. WaterVoda, forna exampleprimer, will compress by only 46.4 parts per million for every unit increase in atmospheric pressure (bar).<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/tables/compress.html Compressibility of Liquids]</ref> At around 4000 bar (58,000 psi) of pressure, at room temperature, water only experiences an 11% decrease in volume.<ref name="ReferenceA">''Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations'' By Wenwu Zhang -- CRC Press 2011 Page 144</ref> In the study of [[fluid dynamics]], liquids are often treated as [[incompressible]], especially when studying [[incompressible flow]]. This incompressible nature makes a liquid suitable for transmitting hydraulic power, because very little of the energy is lost in the form of compression.<ref name="ReferenceA"/> However, the very slight compressibility does lead to other phenomena. The banging of pipes, called [[water hammer]], occurs when a valve is suddenly closed, creating a huge pressure-spike at the valve that travels backward through the system. Another phenomenon caused by liquid's incompressibility is [[cavitation]], where liquid in an area of low pressure vaporizes and forms bubbles, which then collapse as they enter high pressure areas. This causes liquid to fill the cavity left by the bubble with tremendous, localized force, eroding any adjacent solid surface.<ref>''Fluid Mechanics and Hydraulic Machines'' by S. C. Gupta -- Dorling-Kindersley 2006 Page 85</ref>
The [[volume]] of a quantity of liquid is fixed by its [[temperature]] and [[pressure]]. Liquids generally expand when heated, and contract when cooled. [[Water]] between 0&nbsp;°C and 4&nbsp;°C is a notable exception.
Liquids have little [[compressibility]]. Water, for example, will compress by only 46.4 parts per million for every unit increase in atmospheric pressure (bar).<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/tables/compress.html Compressibility of Liquids]</ref> At around 4000 bar (58,000 psi) of pressure, at room temperature, water only experiences an 11% decrease in volume.<ref name="ReferenceA">''Intelligent Energy Field Manufacturing: Interdisciplinary Process Innovations'' By Wenwu Zhang -- CRC Press 2011 Page 144</ref> In the study of [[fluid dynamics]], liquids are often treated as [[incompressible]], especially when studying [[incompressible flow]]. This incompressible nature makes a liquid suitable for transmitting hydraulic power, because very little of the energy is lost in the form of compression.<ref name="ReferenceA"/> However, the very slight compressibility does lead to other phenomena. The banging of pipes, called [[water hammer]], occurs when a valve is suddenly closed, creating a huge pressure-spike at the valve that travels backward through the system. Another phenomenon caused by liquid's incompressibility is [[cavitation]], where liquid in an area of low pressure vaporizes and forms bubbles, which then collapse as they enter high pressure areas. This causes liquid to fill the cavity left by the bubble with tremendous, localized force, eroding any adjacent solid surface.<ref>''Fluid Mechanics and Hydraulic Machines'' by S. C. Gupta -- Dorling-Kindersley 2006 Page 85</ref>
 
=== Pritisak i plovnostpotisak ===
{{main|Statika fluida}}
 
U [[gravitaciono polje|gravitacionom polju]], tečnosti vrše [[pritisak]] na zidove suda kao i na predmete u samoj tečnosti. Taj pritisak se prenosi u svim pravcima i povećava se sa dubinom. Ako je tečnost u miru u uniformnom gravitacionom polju, pritisak, ''p'', na bilo kojoj dubini, ''z'', je dat sa
In a [[gravitational field]], liquids exert [[pressure]] on the sides of a container as well as on anything within the liquid itself. This pressure is transmitted in all directions and increases with depth. If a liquid is at rest in a uniform gravitational field, the pressure, ''p'', at any depth, ''z'', is given by
:<math>p=\rho g z\,</math>
gde:
where:
:<math>\rho\,</math> is theoznačava [[densitygustina|gustinu]] of the liquidtečnosti (assumedpretpostavljenog constantsadržaja)
:<math>g\,</math> is theje [[gravitygravitacija|gravitationalgravitaciono accelerationubrzanje]].
Ova formula pretpostavlja da je pritisak ''na'' slobodnoj površini jednak nuli, i da su efekti [[površinski napon|površinskog napona]] zanemarljivi.
Note that this formula assumes that the pressure ''at'' the free surface is zero, and that [[surface tension]] effects may be neglected.
 
Objekti uronjeni u tečnosti su podložni fenomenu [[potisak|potiska]].<ref>{{Cite web|url=http://www.weizmann.ac.il/home/fnfal/papers/Natfloat.pdf |title=Floater clustering in a standing wave: Capillarity effects drive hydrophilic or hydrophobic particles to congregate at specific points on a wave | date=23 June 2005 |format=PDF}}</ref> (Potisak je primenta u svim fluidima, mada je posebno jak u tečnostima zbog njihove velike gustine.)
Objects immersed in liquids are subject to the phenomenon of [[buoyancy]]. (Buoyancy is also observed in other fluids, but is especially strong in liquids due to their high density.)
 
=== Površine ===