U matematici, a posebno u teoriji skupova, skup A je podskup skupa B ako se A sadrži unutar B. Pritom A može biti jednak B.

Ojlerov dijagram koji pokazuje
A je podskup skupa B
Venov dijagram koji pokazuje
A je podskup skupa B

DefinicijeUredi

Ako su A i B skupovi, i svaki element iz A takođe element iz B, onda:

  • A je podskup skupa B, u oznaci  ,
ili ekvivalentno
  • B je nadskup skupa A, u oznaci  .

Ako je A podskup od B, ali A nije jednak B (to jest, postoji barem jedan element u B koji ne postoji u A), onda

  • A je takođe pravi podskup od B; ovo se zapisuje kao  .
ili ekvivalentno
  • B je pravi nadskup od A; ovo se zapisuje kao  .

Za svaki skup S, relacija inkluzije ⊆ je parcijalno uređenje na skupu 2S svih podskupova od S (partitivni skup od S).

Simboli ⊂ i ⊃Uredi

Ponekad se zapisuje A ⊂ B umesto A ⊆ B da se označi da je A podskup od B. Slično, ponekad se piše A ⊃ B da se označi da je A nadskup od B. Po ovoj konvenciji, ako je sve šta znamo da je A ⊂ B, još uvek je moguće da su A i B jednaki skupovi.

Nekad se simboli ⊂ i ⊃ koriste da označe prave podskupove ili nadskupove umesto   i  . Ovo korišćenje čini simbole ⊆ i ⊂ analogne simbolima ≤ i <. Na primer, ako x ≤ y onda x može biti jednako y, ali ne mora, ali ako je x < y, onda x sigurno nije jednako y, već je strogo manje od y. Slično, ako se uzme da ⊂ znači pravi podskup, onda ako A ⊆ B, sledi da A može ali ne mora biti jednako B, ali ako A ⊂ B, onda A sigurno nije jednako B.

PrimeriUredi

  • Skup {1, 2} je pravi podskup skupa {1, 2, 3}.
  • Svaki skup je podskup samog sebe, ali nije pravi podskup samog sebe.
  • Prazan skup, u oznaci ∅, je takođe podskup svakog datog skupa X. Prazan skup je uvek pravi podskup, izuzev sebe samog.
  • Skup {x : x je prost broj veći od 2000} je pravi podskup skupa {x : x je neparan broj veći od 1000}
  • Skup prirodnih brojeva je pravi podskup skupa racionalnih brojeva, a skup tačaka na duži je pravi podskup skupa tačaka na pravoj na kojoj ta duž leži. Ovo su kontraintuitivni primeri kod kojih su i deo i celina beskonačni, i deo ima isti broj elemenata kao celina.