Normalna raspodela

Gustina verovatnoće normalne raspodele sa različitim parametrima. Zelenom bojom je predstavljena normalna normirana raspodela.

Normalna raspodela ili Gausova raspodela, je važna familija neprekidnih raspodela verovatnoće, sa primenama u mnogim poljima. Članovi familije normalne raspodele su definisani preko dva parametra, matematičko očekivanje, i varijansa (disperzija) σ2. Normalna normirana raspodela je normalna raspodela sa očekivanjem jednakim nuli, i varijansom jednakom jedan (zelena kriva na slici desno). Karl Fridrih Gaus se dovodi u vezu sa ovim skupom raspodela, jer je pomoću njih analizirao astronomske podatke[1], i definisao jednačinu funkcije gustine raspodele normalne raspodele.

Važnost normalne raspodele kao modela kvantitativnih fenomena u prirodnim i društvenim naukama je posledica centralne granične teoreme. Mnoga psihološka merenja i fizički fenomeni se mogu dobro aproksimirati normalnom raspodelom. Iako su mehanizmi koji leže u osnovi ovih fenomena često nepoznati, upotreba modela normalne raspodele se teoretski opravdava pretpostavkom da mnogo malih, nezavisnih uticaja aditivno doprinose svakoj opservaciji.

Normalna raspodela se javlja i u mnogim oblastima statistike. Na primer, srednja vrednost uzorka ima približno normalnu raspodelu, čak i ako raspodela verovatnoće populacije iz koje se uzorak uzima nije normalna. Normalna raspodela je najčešće korišćena familija raspodela u statistici, i mnogi statistički testovi su bazirani na pretpostavci normalnosti. U teoriji verovatnoće, normalne respodele se javljaju kao granične raspodele više neprekidnih i slučajnih familija raspodela.

DefinicijaUredi

Slučajna promenljiva   sa raspodelom verovatnoće  

  [2]

ima normalnu raspodelu sa parametrima  ,  , što se piše kao   ili  , gde je   matematičko očekivanje i   standardna devijacija.

Funkcija raspodele verovatnoće normalne raspodele data je izrazom:  

 
Funkcija raspodele verovatnoće standardne normalne raspodele  

To je gustina verovatnoće za standardnu normalnu raspodelu ( ). Intervali na rastojanju 1, 2 i 3 standardne devijacije od matematičkog očekivanja 0 zauzimaju 68 %, 95,5 % i 99,7 % površine ispod zvonaste krive. Isti procenti važe za svaku normalnu raspodelu, bez obzira na matematičko očekivanje i standardnu devijaciju. Treba primetiti da gustina normalne raspodele nikada ne dostiže 0, dakle važi   za sve realne vrednosti  .

Normalna raspodela je granični slučaj centralne granične teoreme koji nikada nije savršen u praksi. Međutim, konvergencija zbirne vrednosti slučajnih promenljivih raste vrlo brzo sa povećanjem broja promenljivih -{n}-. Zbir 30 ili 40 nezavisnih slučajnih promenljivih, koje pripadaju identičnom i proizvoljnom tipu raspodele verovatnoće, već je veoma blizak normalnoj raspodeli.

OsobineUredi

SimetrijaUredi

Graf funkcije normalne raspodele   je zvonasta Gausova kriva, čija visina i širina zavisi od parametra  . Kriva je osno simetrična oko ose  . Njena kumulativna funkcija   ima centralnu simetriju oko tačke  .

Maksimum i prevojne tačke funkcije raspodele verovatnoćeUredi

Izračunavanjem prvog i drugog izvoda možemo izračunati maksimum i prevojne tačke funkcije normalne raspodele. Prvi izvod funkcije raspodele verovatnoće je

 

Maksimum se nalazi u tački  , gde iznosi  

Drugi izvod glasi:

 

Otuda zaključujemo da se prevojne tačke nalaze na koordinatama  .

NormiranjeUredi

Ukupna površina ispod Gausove zvonaste krive je tačno 1, što je odraz činjenice da je verovatnoća sigurnog događaja 1. Odatle sledi da od dve Gausove krive koje imaju isto  , ali različitu vrednost  , ona sa većim   je šira i niža nego ona druga. Dve Gausove krive sa sa jednakim   i različitim   imaju grafike koji izgledaju istovetno, osim što su pomereni po  -osi za iznos razlike dve vrednosti  .

Normiranje Gausove krive se izvodi na sledeći način.

Definišimo

 

Da bi raspodela   bila normirana, mora važiti  .

Integral ćemo uprostiti korišćenjem linearne supstitucije  , a onda važi  

 

Kao što smo i očekivali, vrednost   je nezavisna od parametara   i  .

IzračunavanjeUredi

Direktna primena integrala za izračunavanje površine ispod Gausove krive nije moguća, jer se ona ne može svesti na elementarne funkcije poznatih integrala. Ranije su se za njeno izračunavanje koristile tabele. Danas je funkcija za izračunavanje ovog integrala dostupna na kalkulatorima i računarima. Tabele ovog integrala se ne daju za odabrane vrednost  - i  , već samo za standardnu normalnu raspodelu sa parametrima   i   (normirana normalna raspodela). Za ostale vrednosti ovih parametara potrebno je preračunavanje.

Tabele takođe daju vrednosti kumulativne funkcije verovatnoće  , poznate i kao Gausov integral greške:

 

Po analogiji, odgovarajuća normirana funkcija gustine verovatnoće   označava se sa  .

Matematičko očekivanjeUredi

Normalna raspodela ima sledeće matematičko očekivanje

 .

Varijansa i standardna devijacijaUredi

Vrednost varijanse normalne raspodele je

 .

Za vrednost standardne devijacije dobijamo

 .

IzvoriUredi

  1. Havil, 2003
  2. Kod funkcije   radi se o eksponencijalnoj funkciji sa osnovom  , koja se predstavlja i kao  .