Noradrenalin ili norepinefrin je hemijska supstanca iz grupe kateholamina koja se proizvodi u organizmu. Noradrenalin je glavni neurotransmiter postganglijskih neurona simpatičkog sistema.[6][7] Jedan deo noradrenalina se sintetiše i oslobađa iz srži nadbubrežnih žlezda kao hormon direktno u krv.

Norepinefrin
(IUPAC) ime
4-[(1R)-2-amino-1-hidroksietil]benzen-1,2-diol
Klinički podaci
Robne marke Levarterenol
AHFS/Drugs.com Monografija
Identifikatori
CAS broj 51-41-2
ATC kod C01CA03
PubChem[1][2] 439260
DrugBank DB00368
ChemSpider[3] 388394
UNII X4W3ENH1CV DaY
KEGG[4] D00076 DaY
ChEBI CHEBI:18357 DaY
ChEMBL[5] CHEMBL1437 DaY
Hemijski podaci
Formula C8H11NO3 
Mol. masa 169.18 g/mol
Sinonimi Noradrenalin
(R)-(–)-Norepinefrin
l-1-(3,4-Dihidroksifenil)-2-aminoetanol
Fizički podaci
Gustina 1.397±0.06 g/cm³
Tačka topljenja 217 °C (423 °F) (razlaže se)
Tačka ključanja 442.6 °C (829 °F) ±40.0 °C
Farmakokinetički podaci
Metabolizam Hepatički
Izlučivanje Urin (84-96%)
Farmakoinformacioni podaci
Licenca

US FDA:link

Trudnoća B3(AU) C(US)
Pravni status Samo na recept (S4) (AU) -only (CA) POM (UK) -only (SAD)
Način primene Intravenozno

Rasprostranjenost

uredi
  • Najveći deo noradrenalina proizvodi se u postgangliskim simpatičkim vlaknima. Njegovim oslobađanjem i vezivanjem za odgvarajuće receptore ciljnih organa ostvaruje se dejstvo simpatičkog sistema. Neka simpatička vlakana sekretuju sa noradrenalinom neuropeptid Y i ATP kao kontransmitere.
  • Jedan deo potiče iz srži nadbubrežnih žlezda. Odatle se sekretuje u direktno krv i putem nje dospeva do gotovo svih organa gde se vezuje za receptore i ostvaruje svoju funkciju.
  • U produženoj moždini i moždanom mostu (latinski: Pons) nalazi se plavo plavo jedro (latinski: Locus coeruleus), čiji su neuroni bogati noradrenalinom. Nervne ćelije iz ovog jedra protežu se do kore velikog mozga, kičmene moždine, malog mozga. Ovi neuroni imaju ulogu u ragulaciji sna i budnosti, kontroli krvotoka...

Uloga

uredi

Noradrenalin je jedan od hormona stresa. Usled stresne reakcije dolazi do aktivacije simpatičkog sistema i lučenja noradrenalina. Pod uticajem ovog neurotransmitera dolazi do:

  • aktivacije moždanih struktura i usmeravanja pažnje
  • ubrzanje rada srca (ß1)
  • povećanja snage srca (β1)
  • suženja krvnih sudova (vazokonstrikcija) (α1) perifernog tkiva
  • proširenja zenica (midrijaza)
  • imhibicije rada creva i bešike, i pojačavanja tonusa mičića sfinktera.
  • Noradrenalin učestvuje još u regulaciji sna i raspoloženja.

Noradrenalin priprema organizam za borbu ili beg.

Glavni članak: Autonomni nervni sistem

Metabolizam i dejstvo adrenalina

uredi

Sinteza

uredi

Noradrenalin zajedno sa dopaminom i adrenalinom pripada grupi kateholamina. Svi katehoamini se sintetišu iz aminokiseline tirozin. Sinteza se vrši direktno u nervnim završecima adrenergičkih neurona, odnosno ćelija srži nadbubrežnih žlezdi, koji poseduju enzime neophodne za ovu sintezu. Tirozin se transportuje iz spoljašnje sredine, mada se može proizvesti iz aminokiseline fenilalanin u ćelijama. Najpre se tirozin hidroksiliše uz pomoć tirozinhidroksilaze do dihidroksifenilalanina (DOPA). Zatim se DOPA procesom dekarboksilacije uz dejstvo enzima dekarboksilaza aromatičnih aminikiselina prevede u dopamin. Dopamin se hidroksiliše preko enzima dopaminhidroksilaza i nastaje noradrenalin. Reakcija može teći dalje jer se metilovanjem noradrenalina dobija adrenalin, još jedan od neurotransmitera.

Noradrenalin se skladišti u sinaptičkim vezikulama, odnosno vezikulama ćelija srži nadbubrežnih žlezda, odakle se i oslobađa procesom egzocitoze.

Dejstvo

uredi

Noradrenalin ispoljava dejstvo vezujući se za odgovarajuće receptore. Postoje α i β receptori. Svi receptori su povezani sa G-proteinom.[8] α receptori se dele na α1 i α2, a β na β1, β2 receptore. Noradrenalin se vezije pretežno za α i za β1 receptore, dok se za β2 receptore vezuje nešto slabije. Odatle potiče i mala razlika u dejstvu ovih veoma sličnih supstanci, tako da npr. adrenalin preko β2 receptora može delovati vazodilatatorno, a preko α1 vazokonstriktorno, dok noradrenalin deluje više preko α1 receptora vazokonstriktorno.[9]

α1-receptori aktiviraju preko proteina-G fosfolipazu C, koja dovodi do daljih promena.

α2-receptori inhibiraju preko proteina-G adenilciklazu-smanjuje se koncentracija cAMP-a, otvaraju se kalijumski kanali, a zatvaraju kalcijumski. Ovi receptori imaju inhibitorno dejstvo.

ß1, ß2-receptori aktiviraju preko proteina-G adenilciklazu, što dovodi do daljih promena kao npr. razgradnja glikogena, razgranja masti...

Glavni članak: Protein-G
Glavni članak: Sinapse

Inaktivacija nordrenalina

uredi

Noradrenalin je vrlo kratko vreme aktivan, jer se brzo inaktivira reapsorpcijom u nervne završetke. U njihovoj citoplazmi se razgrađuje putem enzima monoaminooksidaza (MAO) i kateholamin-O-metiltransferaza (COMT) ili ponovo skladišti u vezikule. Proizvodi inaktivacije su normetanefrin, i vanilin mandelična kiselina. Koncentracija vanilin mandelične kiseline se može meriti u mokraći, što igra ulogu u dijagnozi nakih bolesti.

Neke supstance kao npr. kokain blokiraju reasorpciju noradrenalina u nervne završetke i tako produžavaju Njegovo dejstvo. Kokain inače sprečava i razgradnju dopamina i serotonina.

U lečenju depresije koriste se takođe lekovi (triciklični antidepresivi) koji pretežno blokiraju reapsorpciju noradrenallina (u manjoj meri i druga dva spomenuta neurotransmitera) u nervne završetke. Postoje i druge vrste antidepresiva, koji selektivno sprečavaju reapsorpciju serotonina i noradrenaline.

Poremećaji

uredi

Feohromocitom je tumor koji proizvodi i oslobađa kateholamine i serotonin. Karakteriše se naglim napadima visokog krvnog pritiska (hipertenzija), crvenila (engleski: flush) i povraćanja.

Reference

uredi
  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.  edit
  2. Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1. 
  3. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  4. Joanne Wixon, Douglas Kell (2000). „Website Review: The Kyoto Encyclopedia of Genes and Genomes — KEGG”. Yeast 17 (1): 48–55. DOI:10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H. 
  5. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. (2012). „ChEMBL: a large-scale bioactivity database for drug discovery”. Nucleic Acids Res 40 (Database issue): D1100-7. DOI:10.1093/nar/gkr777. PMID 21948594.  edit
  6. Darinka Koraćević, Gordana Bjelaković, Vidosava Đorđević. Biohemija. savremena administracija. ISBN 86-387-0622-7. 
  7. David L. Nelson, Michael M. Cox (2005). Principles of Biochemistry (4th izd.). New York: W. H. Freeman. ISBN 0-7167-4339-6. 
  8. Arthur C. Guyton John E. Hall (1999). Medicinska fiziologija. savremena administracija Beograd. 
  9. Forth Henschler Rummel. Pharmakologie und toxikologie. Urban&Fischer. ISBN 3-437-42520-X. 

Literatura

uredi
  • Forth Henschler Rummel. Pharmakologie und toxikologie. Urban&Fischer. ISBN 3-437-42520-X. 
  • Arthur C. Guyton John E. Hall (1999). Medicinska fiziologija. savremena administracija Beograd. 
  • Darinka Koraćević, Gordana Bjelaković, Vidosava Đorđević. Biohemija. savremena administracija. ISBN 86-387-0622-7. 

Povezano

uredi

Vanjske veze

uredi

Šablon:Amino alkoholi