Idoksuridin je organsko jedinjenje, koje sadrži 9 atoma ugljenika i ima molekulsku masu od 354,099 Da.[5][6][7][8][9]

Idoksuridin
Klinički podaci
Robne marke Antizona, Dendrid, Emanil, Heratil
AHFS/Drugs.com Monografija
Identifikatori
CAS broj 54-42-2
ATC kod D06BB01 , S01AD01
PubChem[1][2] 5905
DrugBank DB00249
ChemSpider[3] 5694
ChEBI CHEBI:147675 DaY
ChEMBL[4] CHEMBL788 DaY
Hemijski podaci
Formula C9H11IN2O5 
Mol. masa 354,099
SMILES eMolekuli & PubHem
Fizički podaci
Tačka topljenja 263 °C (505 °F)
Farmakoinformacioni podaci
Trudnoća ?
Pravni status
Način primene topikalno, oftalmički

Osobine

uredi
Osobina Vrednost
Broj akceptora vodonika 5
Broj donora vodonika 3
Broj rotacionih veza 2
Particioni koeficijent[10] (ALogP) -1,4
Rastvorljivost[11] (logS, log(mol/L)) -0,8
Polarna površina[12] (PSA, Å2) 99,1

Reference

uredi
  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.  edit
  2. Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1. 
  3. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  4. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. (2012). „ChEMBL: a large-scale bioactivity database for drug discovery”. Nucleic Acids Res 40 (Database issue): D1100-7. DOI:10.1093/nar/gkr777. PMID 21948594.  edit
  5. Seth AK, Misra A, Umrigar D: Topical liposomal gel of idoxuridine for the treatment of herpes simplex: pharmaceutical and clinical implications. Pharm Dev Technol. 2004 Aug;9(3):277-89. PMID 15458233
  6. Otto SE: Radiopharmaceuticals (Strontium 89) and radiosensitizers (idoxuridine). J Intraven Nurs. 1998 Nov-Dec;21(6):335-7. PMID 10392098
  7. Fauth E, Zankl H: Comparison of spontaneous and idoxuridine-induced micronuclei by chromosome painting. Mutat Res. 1999 Apr 6;440(2):147-56. PMID 10209337
  8. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011). „DrugBank 3.0: a comprehensive resource for omics research on drugs”. Nucleic Acids Res. 39 (Database issue): D1035-41. DOI:10.1093/nar/gkq1126. PMC 3013709. PMID 21059682. 
  9. David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali (2008). „DrugBank: a knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Res 36 (Database issue): D901-6. DOI:10.1093/nar/gkm958. PMC 2238889. PMID 18048412. 
  10. Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o. 
  11. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573. 
  12. Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286. 

Literatura

uredi

Spoljašnje veze

uredi