Furijeov red je matematička operacija kojom se periodična funkcija razlaže na svoje „spektralne komponente“ radi jednostavnije analize. Nekoliko prvih članova takvog razvoja se u tehnici često uzimaju kao veoma korisna vrsta aproksimacije.

Diskretna furijeova transformacija pretvara diskretne vrednosti (vektor) u Furijeove koeficijente. Neprekidna furijeova transformacija radi to isto sa funkcijom. Naziv je dobila po francuskom matematičaru Žozefu Furijeu (1768—1830).

Matematička osnova

uredi

Uzmimo neku periodičnu funkciju   sa periodom T, za koju važi  . Zbog periodičnosti možemo da je razdelimo na N sinus i kosinus funkcija:

 ,  , gde je   osnovna frekvencija, odnosno harmonik.

Treba imati na umu da je sinus samo kosinus sa faznim pomerajem:

 

Kada definišemo  , a potom   i   dobijamo isti izraz, ovog puta bez faze:

 

Zašto se ne uzima tan ili recimo cosh? Zašto baš cos i sin? Razlog je ortogonalnost sin i cos funkcija.  

Ideja iza furijeove transformacije je sledeća: ceo prostor koji ima „normalne“ ose transformišemo u prostor u kome su nove ortogonalne ose kosinus i sinus talasi i njihovi viši harmonici. Signal koji transformišemo je samo jedna tačka (mesni vektor), a vrednosti na svakoj osi su amplitude svakog harmonika pojedinačno ( ).

Sada se uključuje Ojlerov identitet uz pomoć koga ove trigonometrijske funkcije možemo da zamenimo kompleksnim pandanima:

  i  

Iz toga dalje sledi

 
 
 

Zamenimo realne koeficijente kompleksnim:

 ,   i  

dobijamo sumu sa negativnim indeksima:

 

Takođe, ne treba gubiti iz vida da su   funkcije isto ortonormalne baze (svaki vektor koji predstavlja osu ima dužinu 1 i normalan je u odnosu na sve ostale vektore):

U slučaju  

 

A za   važi:

 
 
 

Furijeovi redovi

uredi

No, želimo sada da neku periodičnu i neprekidnu funkciju približno izračunamo uz pomoć sume trigonometrijskih funkcija (konkretno: kosinusa i sinusa). Videli smo kako možemo da dođemo do  ; gornju jednačinu množimo sa   i naposletku integrišemo sa obe strane po intervalu [0,T] odnosno u trajanju jedne periode:

 
 

Za integrale sa desne strane važi:

kada je n=0:  
a kada je n≠0:    

Iz   sledi  , a to dalje možemo da primenimo na gore navedeni integral:

 

Na kraju se cela računica uprošćava:

 
 
 

 

U celom računu neka nas ne zbunjuje korišćenje promenljive  , njena svrha je puko uprošćavanje jednačine. Sve je stoga samo dosetljivost, odnosno umetnost kako napisati jedno te isto na drugačiji način.

Na kraju, Furijeov red definišemo:

 

Konvergentnost Furijeovog reda

uredi

Furijeov red konvergira ka mnogim funkcijama; tu spadaju pored ostalih sve funkcije koje imaju izvod ili su kvadratno integrabilne (L2 prostor).

Pretpostavimo da je   jedna takva funkcija. Kada namestimo  , onda ona takođe može da se napiše i ovako:

 
 

Povezano

uredi

Literatura

uredi