Cisplatin, cisplatina, ili cis-diamindihloroplatina(II) (CDDP) je hemoterapijski lek. On je bio prvi član klase [[antikancerskih lekova koji sadrže platinu, koja takođe obuhvata karboplatin i oksaliplatin. Ovi platinski kompleksi reaguju in vivo, vezuju se i uzrokuju unakrsno povezivanje DNK, što ultimatno inicira apoptozu (programiranu ćelijsku smrt).

Cisplatin
Klinički podaci
Robne marke Abiplatin, Biocisplatinum, Briplatin, Carboquone
AHFS/Drugs.com Monografija
Identifikatori
CAS broj 15663-27-1
ATC kod L01XA01
PubChem[1][2] 441203
DrugBank DB00515
ChemSpider[3] 389985
KEGG[4] C06911 DaY
ChEBI CHEBI:27899 DaY
ChEMBL[5] CHEMBL273943 DaY
Hemijski podaci
Formula H4Cl2N2Pt 
Mol. masa 298,035
SMILES eMolekuli & PubHem
Fizički podaci
Tačka topljenja 270 °C (518 °F)
Farmakokinetički podaci
Poluvreme eliminacije 20 - 30 minuta
Izlučivanje Urinom
Farmakoinformacioni podaci
Trudnoća ?
Pravni status
Način primene Intravenozno

Cisplatin je hemijsko jedinjenje koje ima molekulsku masu od 298,035 Da.[6][7]

Osobine

uredi
Osobina Vrednost
Broj akceptora vodonika 2
Broj donora vodonika 2
Broj rotacionih veza 0
Particioni koeficijent[8] (ALogP) -0,5
Rastvorljivost[9] (logS, log(mol/L)) 1,0
Polarna površina[10] (PSA, Å2) 52,0

Reference

uredi
  1. Li Q, Cheng T, Wang Y, Bryant SH (2010). „PubChem as a public resource for drug discovery.”. Drug Discov Today 15 (23-24): 1052-7. DOI:10.1016/j.drudis.2010.10.003. PMID 20970519.  edit
  2. Evan E. Bolton, Yanli Wang, Paul A. Thiessen, Stephen H. Bryant (2008). „Chapter 12 PubChem: Integrated Platform of Small Molecules and Biological Activities”. Annual Reports in Computational Chemistry 4: 217-241. DOI:10.1016/S1574-1400(08)00012-1. 
  3. Hettne KM, Williams AJ, van Mulligen EM, Kleinjans J, Tkachenko V, Kors JA. (2010). „Automatic vs. manual curation of a multi-source chemical dictionary: the impact on text mining”. J Cheminform 2 (1): 3. DOI:10.1186/1758-2946-2-3. PMID 20331846.  edit
  4. Joanne Wixon, Douglas Kell (2000). „Website Review: The Kyoto Encyclopedia of Genes and Genomes — KEGG”. Yeast 17 (1): 48–55. DOI:10.1002/(SICI)1097-0061(200004)17:1<48::AID-YEA2>3.0.CO;2-H. 
  5. Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP. (2012). „ChEMBL: a large-scale bioactivity database for drug discovery”. Nucleic Acids Res 40 (Database issue): D1100-7. DOI:10.1093/nar/gkr777. PMID 21948594.  edit
  6. Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011). „DrugBank 3.0: a comprehensive resource for omics research on drugs”. Nucleic Acids Res. 39 (Database issue): D1035-41. DOI:10.1093/nar/gkq1126. PMC 3013709. PMID 21059682.  edit
  7. David S. Wishart, Craig Knox, An Chi Guo, Dean Cheng, Savita Shrivastava, Dan Tzur, Bijaya Gautam, and Murtaza Hassanali (2008). „DrugBank: a knowledgebase for drugs, drug actions and drug targets”. Nucleic Acids Res 36 (Database issue): D901-6. DOI:10.1093/nar/gkm958. PMC 2238889. PMID 18048412.  edit
  8. Ghose, A.K., Viswanadhan V.N., and Wendoloski, J.J. (1998). „Prediction of Hydrophobic (Lipophilic) Properties of Small Organic Molecules Using Fragment Methods: An Analysis of AlogP and CLogP Methods”. J. Phys. Chem. A 102: 3762-3772. DOI:10.1021/jp980230o. 
  9. Tetko IV, Tanchuk VY, Kasheva TN, Villa AE. (2001). „Estimation of Aqueous Solubility of Chemical Compounds Using E-State Indices”. Chem Inf. Comput. Sci. 41: 1488-1493. DOI:10.1021/ci000392t. PMID 11749573.  edit
  10. Ertl P., Rohde B., Selzer P. (2000). „Fast calculation of molecular polar surface area as a sum of fragment based contributions and its application to the prediction of drug transport properties”. J. Med. Chem. 43: 3714-3717. DOI:10.1021/jm000942e. PMID 11020286.  edit

Literatura

uredi

Spoljašnje veze

uredi

Šablon:Intracelularni hemoterapijski agensi